VERFAHREN ZUR ONLINE-KALIBRIERUNG EINES SENSORS EINES FAHRZEUGS

    公开(公告)号:EP3578995A1

    公开(公告)日:2019-12-11

    申请号:EP19174300.4

    申请日:2019-05-14

    申请人: Robert Bosch GmbH

    IPC分类号: G01P21/00 G01C25/00 G01D18/00

    摘要: Die Erfindung betrifft ein Verfahren zur Online-Kalibrierung eines Sensors eines Fahrzeugs, insbesondere eines Zweiradfahrzeugs, umfassend die Schritte
    - Ermitteln von ersten zumindest zweidimensionalen Beschleunigungsdaten anhand von Messwerten eines Beschleunigungssensors während einer Beschleunigungsphase des Fahrzeugs, wobei das Zweiradfahrzeug in einer Raumrichtung ausgerichtet ist.
    - Ermitteln von zweiten zumindest zweidimensionalen Beschleunigungsdaten während einer beschleunigungsfreien Phase des Fahrzeugs, wobei das Zweiradfahrzeug in der gleichen Raumrichtung ausgerichtet ist,
    - Ermitteln von bias-kompensierten Beschleunigungsdaten in der Ebene von Fahrzeuglängs- und -hochachse auf Basis der ermittelten ersten und zweiten Beschleunigungsdaten,
    - Ermitteln von Biasdaten für den Sensor in zumindest einer Raumrichtung zumindest anhand der Fahrzeuggeschwindigkeit, und
    - Kalibrieren des Sensors mittels der ermittelten Biasdaten und der bias-kompensierten Beschleunigungsdaten.

    APPARATUS AND METHOD FOR VERIFYING OPERATION OF AIR DATA PROBES

    公开(公告)号:EP3537130A1

    公开(公告)日:2019-09-11

    申请号:EP19160664.9

    申请日:2019-03-04

    摘要: A method (500), comprising : (554) receiving measured air pressure data from each air data probe (112) on a vehicle (100) ; (550) receiving a first set of data from at least one sensor system (202A) on the vehicle (100) ; (558) determining predicted noise levels for each air data probe (112) using a noise modelling system (202A) and the received first set of data; (560) determining a transmission loss for each air data probe (112) ; (562) determining if any air data probe (112) is faulty by determining if an transmission loss of any of the air data probes (112) is greater than a first threshold value, where an air data probe (112) is deemed faulty if its transmission loss is greater than the first threshold value; and if the transmission loss of any of the air data probes (112) is greater than the first threshold value, then generating a signal to indicated that at least one air data probe (112) is faulty.

    AIR DATA AIDED INERTIAL MEASUREMENT UNIT
    55.
    发明公开

    公开(公告)号:EP3527948A1

    公开(公告)日:2019-08-21

    申请号:EP18157688.5

    申请日:2018-02-20

    发明人: ELL, Todd

    IPC分类号: G01C25/00 G01C21/16 G01P21/00

    摘要: An inertial measurement unit (IMU) includes an inertial sensor assembly including a plurality of accelerometers and a plurality of rate gyroscopes, an inertial sensor compensation and correction module, and a Kalman estimator module. The inertial sensor compensation and correction module is configured to apply a set of error compensation values to sensed acceleration and rotational rate to produce a compensated acceleration and a compensated rotational rate of the IMU. The Kalman estimator module is configured to determine a set of error correction values based on a difference between a change in integrated acceleration of the IMU and a change in true airspeed of the IMU. The inertial sensor compensation and correction module is further configured to apply the set of error correction values to each of the compensated acceleration and the compensated rotational rate to output an error-corrected acceleration and an error-corrected rotation rate.

    FUNCTIONAL SELF-TEST FOR A PIEZOELECTRIC ELEMENT DEPLOYED IN AN END-PRODUCT

    公开(公告)号:EP3524946A1

    公开(公告)日:2019-08-14

    申请号:EP18156383.4

    申请日:2018-02-12

    发明人: CADA, David

    摘要: Apparatus and associated methods relate to a functional self-test, including (1) generation of an excitation signal, (2) applying the excitation signal to a unit under test (UUT), the excitation signal including a cyclical signal for a first interval and substantially zero signal for a second interval, (3) determining frequency content of a UUT response signal, and (4) generating a fail result in response to the frequency content below a predetermined threshold. In an illustrative example, the UUT may be a piezoelectric element (PE). The UUT response signal may be processed by a filter, for example. A portion of the filtered UUT response signal, responding to the second interval of the excitation signal, may be analyzed by a fast Fourier transform module (FFTm), for example. In various implementations, the functional self-test may advantageously determine the health of a piezoelectric gas sensing element, periodically, in a field-deployed implementation.

    AIRCRAFT AIR DATA GENERATION USING LASER SENSOR DATA AND INERTIAL SENSOR DATA

    公开(公告)号:EP3511721A1

    公开(公告)日:2019-07-17

    申请号:EP19150553.6

    申请日:2019-01-07

    发明人: WINTER, John D.

    摘要: A set of aircraft air data parameter outputs is generated based on laser sensor data and inertial sensor data. Directional light is emitted in one or more directions into air about an exterior of an aircraft, and returns of the emitted directional light in the one or more directions is sensed. Laser sensor data representing velocity of the aircraft in the one or more directions, static pressure of the air, and static air temperature of the air is generated based on the sensed returns. Acceleration and rotational rate of the aircraft is sensed in three axes. The set of aircraft air data parameter outputs is generated based on the laser sensor data and the inertial sensor data. The set of aircraft air data parameter outputs includes aircraft static air pressure, aircraft static air temperature, aircraft true airspeed, aircraft angle of attack, and aircraft angle of sideslip.