摘要:
Apparatus and associated methods relate to ranging an object (70) in a scene external to an aircraft (12). A light projector (34) and two cameras (36, 38) are mounted on the aircraft (12), the cameras (36, 38) at two locations distinct from one another. The light projector (34) and the two cameras (36, 38) are coordinated so that the light projector (34) projects a linear-patterned beam of light while the cameras (36, 38) simultaneously capture a row or column of image data corresponding to an active row or column of pixels upon which a linear-patterned beam of light projected by the light projector (34) and reflected by the scene is focused. Range to the object (70) is calculated using triangulation based on the captured rows or columns of image data and the distinct locations of the two cameras (36, 38) from which the image data are simultaneously captured.
摘要:
Apparatus and associated methods relate to a dual-mode seeker for a guided missile equipped with seeker/designation handoff capabilities. The dual-mode seeker has SemiActive Laser (SAL) and Image InfraRed (IIR) modes of operation. SAL-mode operation includes detecting laser pulses reflected by a target designated by a remote Laser Target Designator (LTD) and determining target direction using the detected laser pulses. SAL-mode operation also includes determining the Pulse Repetition Interval (PRI) of the detected laser pulses, and predicting timing of future pulses generated by the LTD. IIR-mode operation includes capturing Short-Wavelength InfraRed (SWIR) images of a scene containing the designated target and determining target location using one or more image features associated with the designated target. After the target direction can be determined using the IIR-mode of operation, an illuminator projects a signal onto the designated target so as to communicate to a remote operator that LTD target designation can be suspended.
摘要:
An imager device (18) disposed on a moving body captures first image data at a first time and second image data at a second, subsequent time. An inertial measurement unit (IMU) disposed on the moving body senses motion of the moving body between the first time and the second time. The first image data is registered to the second image data based on inertial measurement data corresponding to the sensed motion to produce first registered image data. In response to identifying that image features are common to both the first registered image data and the second image data, the first registered image data is registered to the second image data based on the identified common features to produce output registered image data. In response to determining that no image features are common to both the first registered image data and the second image data, the first registered image data is output.
摘要:
Apparatus and associated methods relate to using a metasurface optical lens (38) to split a narrow-band portion of the multichromatic light passing through an optical lens stack (36). The optical lens stack (36) is aligned along an optical axis and is configured to focus multichromatic light passing therethrough onto a target imaging region of a focal plane array (30), thereby forming a multichromatic image of a scene aligned with the optical axis. The metasurface optical lens (38) directs the split-off narrow-band portion of the multichromatic light to a laser designator imaging region of the focal plane array (30), thereby forming a narrow-band image of the scene aligned with the optical axis. Use of a metasurface optical lens (38) within the optical lens stack provides the creation of two images corresponding to two non-overlapping frequency bands of light to be formed using one optical lens stack (36).
摘要:
Apparatus and associated methods relate to ranging object(s) nearby an aircraft (12) using triangulation of pulses of spatially-patterned light projected upon and reflected by the object(s). The projected pulses provide rapidly-changing illumination of a spatially patterned portion of the scene. A camera (36, 38) receives a reflected portion of the projected pulse and focuses the received portion onto a plurality of light-sensitive pixels, thereby forming a pulse image. The pulse image includes pixel data indicative of a rate of change of light intensity focused thereon exceeding a predetermined threshold. Pixel coordinates, corresponding to a subset of the plurality of light-sensitive pixels that are indicative of the rate of change of light intensity exceeding a predetermined threshold, are identified. Trajectory and/or range data of object(s) in the scene are calculated, based on a projector location, a camera location, and the identified pixel coordinates.
摘要:
Apparatus and associated methods relate to ranging an object nearby an aircraft (12) by triangulation of spatially-patterned light projected upon and reflected from the object. The spatially patterned light can have a wavelength corresponding to infrared light and/or to an atmospheric absorption band. In some embodiments, images of the object are captured both with and without illumination by the spatially-patterned light. A difference between these two images can be used to isolate the spatially-patterned light. The two images can also be used to identify pixel boundaries of the object and to calculate ranges of portions of the object corresponding to pixels imaging these portions. For pixels imaging reflections of the spatially-patterned light, triangulation can be used to calculate range. For pixels not imaging reflections of the spatially-patterned light, ranges can be calculated using one or more of the calculated ranges calculated using triangulation corresponding to nearby pixels.
摘要:
An inertial measurement unit (IMU) includes an inertial sensor assembly including a plurality of accelerometers and a plurality of rate gyroscopes, an inertial sensor compensation and correction module, and a Kalman estimator module. The inertial sensor compensation and correction module is configured to apply a set of error compensation values to sensed acceleration and rotational rate to produce a compensated acceleration and a compensated rotational rate of the IMU. The Kalman estimator module is configured to determine a set of error correction values based on a difference between a change in integrated acceleration of the IMU and a change in true airspeed of the IMU. The inertial sensor compensation and correction module is further configured to apply the set of error correction values to each of the compensated acceleration and the compensated rotational rate to output an error-corrected acceleration and an error-corrected rotation rate.