Abstract:
A system for metal powder atomization comprising a refractory lined melting furnace (1) configured to melt metal into a liquid metal bath (6), in which furnace (1) a drain (3) is arranged for draining liquid metal from the bottom of the furnace. The drain (3) is configured to be closed by a stopping member. The system comprises an atomization chamber (2) configured to receive and atomize liquid metal from the melting furnace (1). The system also comprises removal means controllable from the bottom region of the furnace (1) for removing the stopping member without interfering with the surface of the liquid metal bath (6). The removal means and the stopping member are configured such that the stopping member is removable independently of the temperature of the liquid metal bath (6) using the removal means.
Abstract:
The present invention addresses the problem of providing a sintered magnet production method in which the cracking of the sintered magnets hardly occurs. It is a method having a pulverizing process in which a lump of alloy of a material for a sintered magnet is pulverized by a method including a hydrogen pulverization method, a filling process in which a cavity is filled with alloy powder obtained by the pulverizing process, an orienting process in which the alloy powder is magnetically oriented by applying a magnetic field to the alloy powder, and a sintering process in which the alloy powder is sintered by heating it according to a predetermined temperature history. In the sintering process, the alloy powder is heated in an inert-gas atmosphere at a higher pressure than atmospheric pressure until the temperature reaches a predetermined pressurization maintenance temperature which is higher than a hydrogen desorption temperature as well as equal to or lower than the sintering temperature. By performing the heating treatment in such a pressurized inert gas, hydrogen-gas molecules remaining in the alloy powder are prevented from suddenly desorbing from the alloy powder, so that the cracking of the sintered magnets hardly occurs.
Abstract:
A method for manufacturing porous aluminum, comprising steps of: press-molding a powder mixture of aluminum powder and supporting powder under pressure of not lower than 200 MPa, the aluminum powder having a volume ratio of 5 to 30 % with respect to a total volume of the powder mixture; sintering a press-molded body with heat treatment in an inert atmosphere within a temperature range of not lower than a melting point of the aluminum powder and lower than 700 °C; and removing the supporting powder from a sintered body. With this method, the porous aluminum having a high porosity and a uniform pore diameter, which is suitable for a current collector in a lithium-ion secondary battery and for a variety of filters, is readily manufactured.
Abstract:
Sintervorrichtung (4) zum Sintern zumindest eines, insbesondere dentalen, Werkstücks (2) mit einem Sinterhohlraum (18) zur Aufnahme des zu sinternden Werkstücks (2) während des Sintervorgangs, wobei der Sinterhohlraum (18) von einer Basisfläche (6) der Sintervorrichtung (4) begrenzt ist, auf der das Werkstück während des Sintervorgangs ablegbar ist , wobei die Sintervorrichtung (4) zumindest eine Gaszuführung (5) zur Einleitung von Schutzgas in den Sinterhohlraum (18) aufweist, wobei die Gaszuführung (5) auf der dem Sinterhohlraum (18) entgegen gesetzten Seite der Basisfläche (6) angeordnet ist und die Basisfläche (6) zur Einleitung des von der Gaszuführung (5) kommenden Schutzgases in den Sinterhohlraum (18) zumindest einen für das Schutzgas durchlässigen Durchströmbereich (14) aufweist.
Abstract:
In a finish heat treatment method and finish heat treatment apparatus for an iron powder, a raw iron powder is placed on a continuous moving hearth and continuously charged into the apparatus. In the pretreatment zone, the raw iron powder is subjected to a pretreatment of heating the raw iron powder in an atmosphere of hydrogen gas and/or inert gas at 450 to 1100°C. In decarburization, deoxidation, and denitrification zones, the pretreated iron powder is subsequently subjected to at least two treatments of decarburization, deoxidation, and denitrification. In the pretreatment zone, a hydrogen gas and/or an inert gas serving as a pretreatment ambient gas is introduced separately from an ambient gas used in the at least two treatments is introduced from the upstream side of the pretreatment zone and released from the downstream side so as to flow in the same direction as a moving direction of the moving hearth.
Abstract:
The present invention provides a rare earth-iron-nitrogen-based alloy material which can produce a rare earth magnet having excellent magnetic characteristics and a method for producing the same, a rare earth-iron-based alloy material suitable as a raw material of the rare earth magnet and a method for producing the alloy material. A rare earth-iron-based alloy material is heat-treated in a hydrogen-containing atmosphere to produce a multi-phase powder 1 in which a phase 3 of a hydrogen compound of a rare earth element is dispersedly present in a phase 2 of an iron-containing material. A powder compact 4 produced by compression-molding the multi-phase powder 1 is heat-treated in a vacuum with a magnetic field of 3 T or more applied, thereby forming a rare earth-iron-based alloy material 5. The rare earth-iron-based alloy material 5 is heat-treated in a nitrogen atmosphere with a magnetic field of 3.5 T or more applied, thereby forming a rare earth-iron-nitrogen-based alloy material 6. The rare earth-iron-based alloy material 5 has a structure in which a crystal of a rare earth-iron-based alloy is oriented in the c-axis direction. The rare earth-iron-nitrogen-based alloy material 6 composed of an ideal nitride can be formed by nitriding the rare earth-iron-based alloy material 5 having this oriented structure with the magnetic field applied, and a rare earth magnet 7 having excellent magnetic characteristics can be formed.