Abstract:
A flexible data disk has consecutive servo tracks having a synchronization and alternate synchronization mark. The synchronization and alternate synchronization marks in each servo sector are radially aligned. Four magnetic pulses represent a synchronization mark and two magnetic pulses represent an alternate synchronization mark. The disk drive system will read and identify the synchronization marks and alternate synchronization marks and start generating timing pulses as appropriate. The servo bursts can then be read allowing the disk drive system to center the transducer head over the data tracks.
Abstract:
A servo system for flexible magnetic disks such that the synchronization pulses do not have to be perfectly aligned. The disk is encoded such that consecutive servo tracks alternate between having a synchronization and an alternate synchronization mark. Four pulses represent a synchronization mark and two pulses represent an alternate synchronization mark. The alternate synchronization marks are off-set from the synchronization marks by a certain distance, such that they do not interfere with each other when a transducer head located between the servo tracks reads them. The disk drive system will read and identify the synchronization marks or alternate synchronization marks and start generating timing signals as appropriate. The servo bursts in the servo sector can then be read.
Abstract:
A servo system for flexible magnetic disks such that the synchronization pulses do not have to be perfectly aligned. The disk is encoded such that consecutive servo tracks alternate between having a synchronization and an alternate synchronization mark. Four pulses represent a synchronization mark and two pulses represent an alternate synchronization mark. The alternate synchronization marks are off-set from the synchronization marks by a certain distance, such that they do not interfere with each other when a transducer head located between the servo tracks reads them. The disk drive system will read and identify the synchronization marks or alternate synchronization marks and start generating timing signals as appropriate. The servo bursts in the servo sector can then be read.
Abstract:
Une servoconfiguration utilisée pour régler avec précision le positionnement de la tête transductrice d'une unité de disques comprend un espace d'effacement (36), suivi d'une rafale d'informations (37) à commande de gain automatique (AGC), suivie d'une première rafale d'informations de servocommande (38), et d'une deuxième rafale d'informations de servocommande (39). La servo-configuration est écrite sur le disque par l'unité de disque en utilisant un index mécanique (35) sur une armature associée à la rotation du disque en tant que première référence temporelle, toutes les autres références étant fondées sur la transition entre l'espace d'effacement et la rafale à AGC. La première et la seconde rafale d'informations de servocommande sont écrites alternativement hors piste, à une distance égale à la moitié de l'écart entre la piste pertinente et les deux pistes immédiatement adjacentes à celle-ci. Par le décodage de la configuration par comparaison de la forme d'onde (52) des informations de servocommande avec la pente de sortie (53) d'un intégrateur, l'on obtient des données de commande (54) de la position numérique afin de régler le transducteur de sorte qu'il soit centré sur la piste pertinente.
Abstract:
A servo system for a magnetic disk file having a voice coil motor (VCM) actuator generates a position error signal (PES) from servo information recorded on one of the disks. An electrical model of the VCM is employed through which a measure of the VCM electrical current is passed to generate a simulated PES signal which is continuous even if the regular PES is sampled or intermittent.
Abstract:
Dans un système de stockage à disque magnétique et un disque magnétique utilisé dans ce système, le disque possède des surfaces opposées, au moins l'une d'elles étant recouverte d'un matériau magnétique, le disque est monté sur une broche de manière à tourner par rapport à un transducteur magnétique positionné pour l'enregistrement et la lecture de données sur le disque, une pluralité de pistes annulaires concentriques sont définies à la surface du disque, chacune des pistes étant divisée en une pluralité de secteurs, à chacun desquels sont associées des servo-données préenregistrées pour son identification. Les servo-données pour chaque secteur comprennent un code d'identification de piste à distance unitaire (14) enregistrée trois fois de suite, le code étant variable entre des secteurs adjacents de pistes adjacentes, et un code de contrôle à décalage d'horloge (15) est enregistré immédiatement à la suite du dernier code d'identification de piste enregistré, le même code de contrôle à décalage d'horloge étant enregistré pour chaque secteur de chaque piste.
Abstract:
A servo system is disclosed for centering a transducer over a path defined by the boundary between adjacent servo tracks on a magnetic disk in which the servo tracks are each formed by alternate long and short magnetic segments, with the short segments in one track being centred with the long segments of adjacent tracks. The servo system includes a frequency doubler circuit (18) for producing a uniform frequency square wave signal of double the fundamental frequency of the analog signal picked up by the transducer from the servo encoding, a filter (77) connected with the transducer for producing an analog double frequency signal based on the analog signal from the transducer, a synchronous detector (80) functioning as a multiplier for multiplying the double frequency square wave signal with the analog double frequency signal from the transducer, and a filter (82) for averaging the resultant pulsating position error signal to provide a steady state position error signal for any particular position of the transducer over a pair of adjacent servo tracks. The steady state position error signal is applied to a servo control and servo actuator for moving the transducer until the steady state position error signal reaches zero which corresponds with the desired centred position of the transducer over the boundary between a pair of adjacent servo tracks.
Abstract:
Servo patterns for patterned media (1201,1202,1203,1208). The servo pattern includes specification of cylinder/track ID with and without a Gray code. The servo pattern space is minimized by the optimum usage of the islands (1204,1209). This is achieved by island allocation rules to take advantage of non-magnetic island. The island allocation also provides for easier lift-off. Logic is used to encode and decode the Gray code. Further, the Gray code is designed to stabilize the magnetic island (1204,1207)/ non-magnetic island (1205,1209) ratio to allow for easier manufacture.
Abstract:
A magnetic recording disk in a disk drive has identical pre-patterned servo patterns on its front and back surfaces. The servo patterns on each disk surface are pre-patterned with a single master template, resulting in the identical pattern on each disk surface. The servo sectors on the two disk surfaces can form identical patterns of angularly spaced arcuate-shaped lines or straight lines that extend radially across the data tracks. However, because the lines on at least one of the disk surfaces do not replicate the path of the recording head, the sampling rate of the servo sectors on that surface is not constant but varies with radial position of the head. To accommodate this, the disk drive's servo control system calculates a timing adjustment from an estimate of the radial position of the head and uses this timing adjustment to adjust the time to open a time window to allow detection of the servo sectors.