摘要:
[Object] To provide an information processing device for enabling a user to easily carry out effective photography depending on a subject or location. [Solution] Provided is an information processing device including: a flight route generation unit that presents a template of flight route information showing a flight route of a flying object, and generates flight route information of the flying object, associating the flight route information of the selected template with a flight range of the flying object, on the basis of an operation performed by a user.
摘要:
Technologies are generally described for controlling a flight path of a UAV based image capture system for solid modeling. Upon determining an initial movement path based on an estimate of a structure to be modeled, images of the structure to be modeled may be captured and surface hypotheses formed for unobserved surfaces based on the captured images. A normal vector and a viewing cone may be computed for each hypothesized surface. A set of desired locations may be determined based on the viewing cones for the entire structure to be modeled and a least impact path for the UAV determined based on the desired locations and desired flight parameters.
摘要:
An unmanned aerial vehicle (UAV) launch tube (100) that comprises at least one inner layer of prepreg substrate (370) disposed about a right parallelepiped aperture (305), at least one outer layer of prepreg substrate (380) disposed about the right parallelepiped aperture (305), and one or more structural panels (341-344) disposed between the at least one inner layer of prepreg substrate (340) and the at least one outer layer of prepreg substrate (380). An unmanned aerial vehicle (UAV) launch tube (100) that comprises a tethered sabot (700,740) configured to engage a UAV within a launcher volume defined by an inner wall, the tethered sabot (700,740) dimensioned to provide a pressure seal at the inner wall and tethered to the inner wall, and wherein the tethered sabot (700,740) is hollow having an open end oriented toward a high pressure volume and a tether (740) attached within a hollow (910) of the sabot (700) and attached to the inner wall retaining the high pressure volume or attach to the inner base wall (1013). A system comprising a communication node (1500-1505) and a launcher (1520) comprising an unmanned aerial vehicle (UAV) in a pre-launch state configured to receive and respond to command inputs from the communication node (1500-1505).
摘要:
An unmanned helicopter 20 includes altitude control device for giving a command of a collective pitch blade angle based on an altitude change rate command, etc., and performing altitude control of an airframe. The unmanned helicopter further includes descending device for causing the airframe to descend to a second altitude while changing descent rate command of the altitude control device and giving a descent rate command smaller than the descent rate command to the second altitude to the altitude control device for causing the airframe to descend from the second altitude to the ground.
摘要:
A system for controlling flight of an aircraft has sensors (37, 43), a receiver (45), and a digital control system (57), all of which are carried aboard the aircraft. The sensors (37, 43) determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver (45) receives transmitted data (51, 55) communicating the position and movement of a reference vehicle relative to the earth. The control system (57) calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors (37, 43) and the receiver (45) and then commands flight control devices (33) on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.
摘要:
A device (300) is a device mounted on a moving body (100) and configured to control the moving body (100). The device (300) includes a holding unit (310) and a control unit (302). The holding unit (310) holds an information processing device (200) that controls the moving body (100). The control unit (302) is configured to acquire control information used to control the moving body (100) from the information processing device (200), and to control the moving body (100) based on the control information.
摘要:
A flight management system for a plurality of aerial vehicles includes a management apparatus and an operation terminal. The management apparatus includes a processing circuit configured to manage operation authorizations to operate the plurality of aerial vehicles. The operation terminal includes an operation interface and a processing circuit. The operation interface is operable by an operator. The processing circuit is connected to the operation interface. Based on an authorization grant request signal obtained based on a flight state of each aerial vehicle of the plurality of aerial vehicles, the processing circuit of the management apparatus is configured to transmit an authorization grant command to grant the operation terminal an operation authorization, among the operation authorizations, that is to operate a particular aerial vehicle among the plurality of aerial vehicles. The processing circuit of the operation terminal is configured to remotely control the particular aerial vehicle while being granted the operation authorization to operate the particular aerial vehicle.
摘要:
[Object] To provide a control device that can make more efficient an inspection performed by a flying body capable of performing imaging. [Solution] Provided is a control device including an acquisition unit configured to acquire information related to an overview of a structure, and a flight information generating unit configured to generate flight information of a flying body being caused to fly over a periphery of the structure to image the structure on the basis of the information acquired by the acquisition unit. The control device generates information used to cause the flying body to image the structure, and thereby makes it possible to make more efficient the inspection performed by the flying body capable of performing imaging.