摘要:
Some embodiments include an x-ray system, comprising: a vacuum enclosure; a plurality of electron sources 116 disposed within the vacuum enclosure; an anode including at least one target with a plurality of focal spots 104 disposed in a planar array within the vacuum enclosure, each focal spot configured to generate an x-ray beam 108 in response to an electron beam from a corresponding one of the electron sources; a plurality of first collimators 106 disposed within the vacuum enclosure, each first collimator associated with a corresponding one of the focal spots and configured to collimate the x-ray beam of the corresponding focal spot; and a second collimator 114 integrated with a housing of the vacuum enclosure or external to the vacuum enclosure, the second collimator configured to collimate each of the x-ray beams.
摘要:
An X-ray assembly may include a vacuum wall, an anode, and a cathode. The vacuum wall may define a vacuum enclosure and may include an X-ray window. The anode may be located within the vacuum enclosure. The anode may include a target area. The cathode may be located within the vacuum enclosure. The cathode may generate an electron stream to travel to a focus area located at the target area of the anode. The cathode may be positioned such that the electron stream travels along an oblique path relative a virtual line positioned so as to intersect a center of the focus area and a center of the X-ray window.
摘要:
At least three radiation-detection views are used to facilitate identifying material as comprises an object being assessed along a beam path relative to that object. This comprises developing a first radiation-detection view (101) as corresponds to the material along the beam path, a second radiation-detection view (102) as corresponds to the material along substantially the beam path, and at least a third radiation-detection view (103) as corresponds to the material along substantially the beam path. At least one of the source spectra and detector spectral responses used for these radiation-detection views are different from one another for each view. One then uses (104) these radiation-detection views to identify the material by, at least in part, differentiating the material from other possible materials.
摘要:
Technology is described for vacuum electron device (e.g., sheet beam klystron) that includes a hollow tube structure. In one example, the hollow tube structure includes at least three resonant cavities 210 and at least two drift tube sections 230. Each resonant cavity includes a cavity width along a major axis and a cavity height along a minor axis. Each drift tube section includes a drift tube section width and a drift tube section height, and the cavity height is greater than the drift tube section height. A first drift tube section is disposed between a first resonant cavity and a second resonant cavity. A second drift tube section is disposed between the second resonant cavity and a third resonant cavity. A drift tube section width of the first drift tube section is substantially different from a drift tube section width of the second drift tube section.
摘要:
Technology is described for calibrating a deflected position of a central ray 352 of an x-ray tube 210 to a radiation imager 240. An x-ray system includes an x-ray tube and a tube control unit (TCU). The x-ray tube includes a cathode that includes an electron emitter configured to emit an electron beam, an anode configured to receive the electron beam and generate x-rays with a central ray from electrons of the electron beam colliding on a focal spot of the anode, and a steering magnetic multipole between the cathode and the anode that is configured to produce a steering magnetic field from a steering signal. At least two poles of the steering magnetic multipole are on opposite sides of the electron beam. The TCU includes at least one steering driver configured to generate the steering signal. The TCU is configured to convert a position correction value to the steering signal.
摘要:
A cathode head can include: a first electron emitter filament having a first size; a first grid pair defining walls of a first filament slot having the first filament therein, each grid member of the first grid pair being electronically coupled to different voltage sources; a second electron emitter filament; and a second grid pair defining walls of a second filament slot having the first electron emitter therein, each grid member of the second grid pair being electronically coupled to different voltage sources. The first grid pair can have a first and second grid members; and the second grid pair can have the second grid member and a third grid member. The first grid member and third grid member are electronically coupled to the same voltage source and the second grid member being electronically coupled to a different voltage source.