摘要:
A fenestrated stent graft with a tubular side arm extending there from in which the side arm can be turned inside out to extend into the stent graft during deployment of the stent graft and extended out during deployment. Also disclosed is a deployment device for such a side arm stent graft which has a deployment catheter and a side arm guide, the side arm guide is releasably fastened at a proximal end to the branch tube and is able to be moved independently of the deployment catheter such that the branch tube can be extended from the tubular body of the stent graft while it is fastened onto the side arm guide. The side arm guide can be formed from a side arm catheter and a side arm guide wire carried in the side arm catheter.
摘要:
A reinforcing ring (10) for a fenestration (32) of a stent graft which can be surface treated such as by passivation and/or electropolishing. The reinforcing ring has several turns of a substantially inextensible resilient wire (12) in a circular two dimensional planar shape and terminal ends (14) at each end of the wire. The terminal ends each comprising a loop (14) and a tail (16). The tail is folded back and extends around the circular shape. Each of the tails of the terminal loops can have an enlarged end. The reinforcing ring can be straightened out for surface treatment such as passivation and/or electropolishing with substantially no part of the circular shape, the loops or tails touching each other.
摘要:
In a method for automatically compensating a voltage regulator an error amplifier (20) and compensation network are initially disconnected from a feedback loop, a DC bias voltage (34) is applied to the feedback loop to cause the regulator's output voltage to be at 90% of its nominal value and an AC perturbation signal (42) is then added to the DC bias voltage to cause the output voltage to have a ripple at a frequency of the AC signal. The gain of the feedback loop and the phase difference between the AC signal and the ripple is then measured. The measured values are then used to automatically adjust operating characteristics of the error amplifier and the compensation network such that, when these components are connected back in the feedback loop during normal operation, the feedback loop has the desired gain and phase margin at the frequency of the AC signal, such as the loop's unity gain frequency.