摘要:
Provided is a system for building and validating an application (including e.g., various software versions and revisions, programming languages, code segments, among other examples) without any scripting required by a system user. In one embodiment, an SDLC system is configured to construct a build and test environment, by automatically analyzing a submitted project. The build environment is configured to assemble existing user code, for example, to generate an application to test. Code building can include any one or more of code compilation, assembly, and code interpretation. The system can include a user interface provided to clients, users, and/or customer environments to facilitate user interaction and control of build and test validation. The system can accept user specification of configurations that controls the way the system runs the user's tests. The system can also provide flexible billing models for different customers.
摘要:
Provided are systems and methods for simplifying cloud compute markets. A compute marketplace can be configured to determine, automatically, attributes and/or constraints associated with a job without requiring the consumer to provide them. The compute marketplace provides a clearing house for excess compute resources which can be offered privately or publically. The compute environment can be further configured to optimize job completion across multiple providers with different execution formats, and can also factor operating expense of the compute environment into the optimization. The compute marketplace can also be configured to monitor jobs and/or individual job partitions while their execution is in progress. The compute marketplace can be configured to dynamically redistribute jobs/job partitions across providers when, for example, cycle pricing changes during execution, providers fail to meet defined constraints, excess capacity becomes available, compute capacity becomes unavailable, among other options.
摘要:
Provided are systems and methods for simplifying cloud compute markets. A compute marketplace can be configured to determine, automatically, attributes and/or constraints associated with a job without requiring the consumer to provide them. The compute marketplace provides a clearing house for excess compute resources which can be offered privately or publically. The compute environment can be further configured to optimize job completion across multiple providers with different execution formats, and can also factor operating expense of the compute environment into the optimization. The compute marketplace can also be configured to monitor jobs and/or individual job partitions while their execution is in progress. The compute marketplace can be configured to dynamically redistribute jobs/job partitions across providers when, for example, cycle pricing changes during execution, providers fail to meet defined constraints, excess capacity becomes available, compute capacity becomes unavailable, among other options.
摘要:
Systems and methods are provided for managing and/or executing cloud compute instances that may be pre-empted by their providers, known in at least one provider as “spot instances”. Various aspects manage early termination (i.e., before customer deallocation or compute task completion) of spot instances, enabling improved utilization, and increasing reliability of executing tasks on spot instances. In some embodiments, systems and/or methods are provided for prediction of when spot instance kills are likely to occur. These systems and/or methods can gracefully handle spot kills issued by Providers (e.g., trigger preservation operations), trigger transitions to spot instances at another Provider, trigger increased bidding to preserve current spot instances, and/or trigger a premium payment to allow for execution of preservation operations, among other options. Other embodiments enable customers to directly manage instance kill operations (e.g., a customer or a customer's program selects instances to terminate via a UI or API, etc.).
摘要:
Provided is a system for building and validating an application (including e.g., various software versions and revisions, programming languages, code segments, among other examples) without any scripting required by a system user. In one embodiment, an SDLC system is configured to construct a build and test environment, by automatically analyzing a submitted project. The build environment is configured to assemble existing user code, for example, to generate an application to test. Code building can include any one or more of code compilation, assembly, and code interpretation. The system can include a user interface provided to clients, users, and/or customer environments to facilitate user interaction and control of build and test validation. The system can accept user specification of configurations that controls the way the system runs the user's tests. The system can also provide flexible billing models for different customers.