Abstract:
A process for the recovery of acrylonitrile or methacrylonitrile from an aqueous solution comprising subjecting the said solution to a water extractive distillation by feeding the solution to a distillation column and performing said extractive distillation and using solvent water introduced at the top of said column, removing a first overhead vapor stream of acrylonitrile or methacrylonitrile with some water from the top of the column, and a first liquid stream containing water and impurities from the bottom of the column, the contents of said column maintained at a substantially neutral pH by adding a sufficient amount of at least one alkaline compound selected from ammonium carbonate, ammonium bicarbonate, ammonium carbamate, and aikylene diamines to the overhead decanter and/or to the solvent water.
Abstract:
A method for the purification of crude acetonitrile comprising distilling the crude acetonitrile in a first fractional distillation column at below atmospheric pressure, withdrawing a first side draw fraction comprising acetonitrile, distilling the first side draw fraction in a second fractional distillation column at super atmospheric pressure, and withdrawing from the second distillation a second side draw fraction comprising purified acetonitrile.
Abstract:
A process for manufacturing acrylonitrile comprising reacting propylene, ammonia and oxygen in a reactor zone in the presence of a catalyst to produce a reactor effluent containing crude acrylonitrile, transferring the reactor effluent containing crude acrylonitrile to a quench column wherein the reactor effluent containing crude acrylonitrile is contacted with an queous stream to cool the reactor effluent, transferring the cooled reactor effluent containing the crude acrylonitrile to an absorption column wherein the reactor effluent containing crude acrylonitrile is contacted with a second aqueous stream to separate and remove the crude acrylonitrile as a bottom stream from the absorption column, transferring the bottom stream containing the crude acrylonitrile to a recovery and purification section where the acrylonitrile is recovered and purified, wherein the improvement comprises supplying the second aqueous stream to the absorption column by means of liquid spray nozzles.
Abstract:
Microspheroidal particles, suitable as fluidized bed catalyst supports, are prepared by incorporating a portion of small, preferably recycled, particles into a slurry of inorganic oxide sol and inorganic particles which is spray dried to form microspheroidal particles.
Abstract:
The method of the present invention comprises feeding crude acetonitrile containing acrylonitrile as an impurity and water into the upper portion of a distillation column, distilling the crude acetonitrile in the presence of the water for a time sufficient to allow substantially all of the acrylonitrile impurity to be vaporized in the presence of the water, removing substantially all of the acrylonitrile in an overhead stream exiting from the distillation column and recovering the crude acetonitrile substantially free of acrylonitrile impurity from the lower portion of the distillation column. In particular, the method can be utilized to produce HPLC grade acetonitrile (UV cutoff
Abstract:
A process for carrying out an endothermic reaction in an endothermic reaction apparatus in which an endothermic reactant is heated by exothermic reaction of two fluids to thereby convert the reactant into an endothermic product, comprising causing the reactant to flow through a plurality of reaction tubes wherein the reactant is to undergo the endothermic reaction, the reaction tubes extending through an exothermic reaction chamber in laterally spaced apart relationship, separately supplying first and second exothermic reaction fluids to the exothermic reaction chamber for reacting within the chamber, the exothermic reaction products flowing in a direction going from an upstream end to a downstream end of the exothermic reaction chamber, the first fluid being introduced into the exothermic reaction chamber at the upstream end thereof in such a manner as to provide a substantially uniform velocity profile across the chamber, and the second fluid being introduced into the exothermic reaction chamber at or downstream of the first fluid and at a plurality of discrete locations interposed among but laterally offset from the reaction tubes, whereby the first fluid reacts with the second fluid for generation of high temperature flames around the reaction tubes and high temperature exothermic reaction products for flow around along the reaction tubes, for heating the reaction tubes to support an endothermic conversion of the endothermic reactant to the endothermic product as it flows through the reaction tubes.