摘要:
In order to employ an output register having a finite number of stages in an arithmetic encoder, it is necessary to provide carryover control, otherwise a register having an impractically large number of stages would be required, i.e., so-called "infinite" register. The so-called "infinite" output register is emulated by employing a counter and a finite register. To this end, a count is accumulated of sets, i.e, bytes, of consecutive prescribed logical signals of a first kind, i.e., logical 1's, being generated by an arithmetic coding register and possibly modified by a carry indication. The accumulated count is then employed to supply as an output a like number of sets including logical signals of a second kind, i.e., logical 0's, or logical signals of the first kind, i.e., logical 1's, depending on whether or not a carry would propagate through the stages of the so-called "infinite" register being emulated.
摘要:
More efficient encoding/decoding in decomposing and recomposing a high resolution image is obtained by employing a unique prediction arrangement. The prediction arrangement determines whether high resolution pixels to be recomposed from low resolution pixels from a low resolution replica of the high resolution are so-called typically predictable or non-typically predictable by using general prediction rules. The general prediction rules are also employed to determine if any of the typically predictable high resolution pixels would be improperly recomposed. Such high resolution pixels which would be improperly recomposed are identified as exceptions. If is noted that so-called supplemental information is required to properly recompose non-typically predictable pixels and typically predictable pixels which are identified as exceptions. To this end, exceptions accompany the low resolution pixel for which the corresponding high resolution pixels would otherwise be improperly recomposed.
摘要:
A high resolution image is decomposed to a basic lower resolution replica and a plurality of supplemental information fields for use in a progressive high resolution image facsimile transmission system. The basic lower resolution replica is generated by successive decompositions of the original image into a plurality of intermediate lower resolution replicas and corresponding supplemental information fields by employing a so-called edge decomposition technique. The supplemental information fields are required in a receiver to upgrade the basic lower resolution replica toward the original high resolution replica.
摘要:
In entropy, e.g., arithmetic or adaptive Huffman, encoding/decoding a context based on prior symbols is needed to provide accurate predictions of symbols to be encoded/decoded. Encoding/decoding efficiency is improved by employing an adaptive context extractor (105). The adaptive context extractor (105) automatically adjusts the configuration of the lag intervals used to define the context. This is realized by adaptively incorporating into the context configuration at least one lag interval found to have a "good" predictive value relative to the particular symbol stream being encoded/decoded. The context configuration adjustment is such that the at least one found lag interval is exchanged with the lag interval currently in an at least one so-called floating predictor position.
摘要:
A high resolution image is decomposed to a basic lower resolution replica and a plurality of supplemental information fields for use in a progressive high resolution image facsimile transmission system. The basic lower resolution replica is generated by successive decompositions of the original image into a plurality of intermediate lower resolution replicas and corresponding supplemental information fields by employing a so-called edge decomposition technique. The supplemental information fields are required in a receiver to upgrade the basic lower resolution replica toward the original high resolution replica.
摘要:
In order to employ an output register having a finite number of stages in an arithmetic encoder, it is necessary to provide carryover control, otherwise a register having an impractically large number of stages would be required, i.e., so-called "infinite" register. The so-called "infinite" output register is emulated by employing a counter and a finite register. To this end, a count is accumulated of sets, i.e, bytes, of consecutive prescribed logical signals of a first kind, i.e., logical 1's, being generated by an arithmetic coding register and possibly modified by a carry indication. The accumulated count is then employed to supply as an output a like number of sets including logical signals of a second kind, i.e., logical 0's, or logical signals of the first kind, i.e., logical 1's, depending on whether or not a carry would propagate through the stages of the so-called "infinite" register being emulated.
摘要:
A high resolution image is decomposed into a low resolution replica and into corresponding supplemental information for facsimile transmission to a remote location. The low resolution replica is generated by replacing a super pixel (picture element) including a plurality of high resolution image pixels with a single low resolution pixel and corresponding supplemental information, if any is required. The pixels of the low resolution replica are chosen such that all supplemental information required to convert the low resolution replica back to the original high resolution image is located at the "edges" of the low resolution replica. Thus, if a low resolution pixel is at an edge in the low resolution replica, supplemental information is generated in accordance with prescribed criteria. In a remote receiver, the decomposition is reversed and the original high resolution image is recomposed by substituting the transmitted supplemental information, if any, for the corresponding low resolution pixels located at the edges of the low resolution replica.
摘要:
More efficient encoding/decoding in decomposing and decomposing a high resolution image is obtained by employing a unique pixel cluster arrangement. The pixel clusters of an image are classified as one of a plurality of classifications. A unique encoding/decoding technique is assigned to each classification. In one embodiment, a cluster including at least one high resolution pixel to be recomposed from a corresponding low resolution pixel which is a so-called exception to general prediction rules is classified as a first classification. A cluster including no pixels which are exceptions is classified as a second classification. Supplemental information is encoded/decoded for all pixels in a cluster classified as the first classification. Pixels in the cluster classified as the second classification are encoded/decoded according to the general prediction rules.