摘要:
System for supporting an evaporable getter, which can be installed in any type of solar power receiving tube and which is mounted using a method that is much more automated than that used until now. Unlike the known prior art, this system consists of a clip-type supporting element having a substantially thin profile and an S-shaped base, the upper part thereof including a ring in which the pellet of evaporable getter is housed. Said pellet is supported by the pins of the supporting element, dispensing with the need for an additional contact part in order to secure the pellet. The clip is secured to the bellows-type expansion compensator, such that it remains inside the vacuum zone of the solar power receiving tube.
摘要:
Insulating element for expansion compensation device and method for manufacture thereof, of the type used in solar energy collector absorber tubes, being formed by a single piece in the form of a ring and with a bellows-like end portion, which is filled with rock wool or other equivalent insulating material, so as to create a hot air chamber which minimizes heat losses.
摘要:
Novel expansion compensation device and method for manufacture thereof, of those used in solar power absorber tubes featuring a dual bellows design where the height of the waves of the bellows is not regular, but the second wave is greater (where it supports more load) and diminishes towards the ends. With this design improving the performance of the receiver is achieved because it shortens the length of the device and consequently there is more surface area receiving solar radiation as well as it decreases the necessary diameter of glass tube and therefore its cost.
摘要:
Vacuum enhancing system or non-evaporable getter of the type used en solar-receptor vacuum tubes which comprises a series of non-evaporable getter material pads the geometry of which is that of a prism with rounded corners and said pads are drilled through the centre thereof and linked by means of a cable ending in a quick-fit closure that allows the fitting thereof to be automated. This system is placed downstream of the expansion-compensating device in the form of non-radial bellows in the longitudinal direction and in the void defined by the vessel that is the interface part between the absorber tube and the expansion-compensating device. A getter system is placed in a radial arrangement, at each of the two ends of the receptor tube, resulting in a receptor tube of completely symmetrical geometry.
摘要:
Vacuum enhancing system or non-evaporable getter of the type used en solar-receptor vacuum tubes which comprises a series of non-evaporable getter material pads the geometry of which is that of a prism with rounded corners and said pads are drilled through the centre thereof and linked by means of a cable ending in a quick-fit closure that allows the fitting thereof to be automated. This system is placed downstream of the expansion-compensating device in the form of non-radial bellows in the longitudinal direction and in the void defined by the vessel that is the interface part between the absorber tube and the expansion-compensating device. A getter system is placed in a radial arrangement, at each of the two ends of the receptor tube, resulting in a receptor tube of completely symmetrical geometry.
摘要:
System for supporting an evaporable getter, which can be installed in any type of solar power receiving tube and which is mounted using a method that is much more automated than that used until now. Unlike the known prior art, this system consists of a clip-type supporting element having a substantially thin profile and an S-shaped base, the upper part thereof including a ring in which the pellet of evaporable getter is housed. Said pellet is supported by the pins of the supporting element, dispensing with the need for an additional contact part in order to secure the pellet. The clip is secured to the bellows-type expansion compensator, such that it remains inside the vacuum zone of the solar power receiving tube.
摘要:
The invention relates to a method for producing a solar power receiving tube and to the resulting tube, which is of the type that includes: an outer glass tube, an inner metal absorber through which a heat-transfer fluid flows, and an intermediate area in which the vacuum is produced. The method comprises the following steps: i. Production of the metal tubes ii. Production of the glass tubes: namely a longer central glass tube and two shorter glass tubes for the ends. iii. Process for the production of the Kovar rings or glass-metal transition elements iv. Process for the welding of the Kovar rings to the tubes v. Process for the production of the bellows or expansion compensating devices assemblies vi. Assembly of the products obtained in the preceding operations vii. Creation of the vacuum and anodising of the welds