摘要:
A feed gas is liquefied using a closed loop refrigeration system in which a cooled compressed gaseous refrigerant stream (150) is expanded (136) to provide a first expanded gaseous refrigerant stream (154) that is substantially vapor and is used to cool and substantially liquefy a feed gas stream (100) through indirect heat exchange (110). The substantially liquefied feed gas stream (102) preferably is subcooled through indirect heat exchange (112) against a second expanded gaseous refrigerant stream (172) that preferably also is substantially vapor and can be provided by a cooled compressed gaseous refrigerant stream (170) or by a portion of the first expanded gaseous refrigerant stream (152). Cooling duty for the compressed gaseous refrigerant stream (146) is provided by a portion (160) of the first expanded gaseous refrigerant stream (152), gaseous refrigerant (156) partially warmed by said heat exchange (110) against feed gas, and/or second expanded gaseous refrigerant stream (174) warmed by said subcooling (112).
摘要:
Described herein is a method and system for liquefying a natural gas feed stream to produce an LNG product. The natural gas feed stream is liquefied, by indirect heat exchange with a gaseous methane or natural gas refrigerant circulating in a gaseous expander cycle, to produce a first LNG stream. The first LNG stream is expanded, and the resulting vapor and liquid phases are separated to produce a first flash gas stream and a second LNG stream. The second LNG stream is then expanded, with the resulting vapor and liquid phases being separated to produce the second flash gas stream and a third LNG stream, all or a portion of which forms the LNG product. Refrigeration is recovered from the second flash gas by using said stream to sub-cool the second LNG stream or a supplementary LNG stream.
摘要:
Described herein is a method of and system for fractionating and liquefying a natural gas feed stream. The natural gas is first fractionated in a scrub column. The overhead vapor from the scrub column is cooled, condensed and divided to form a first, a second and at least one further stream of liquefied first overhead. The first stream of liquefied first overhead is returned to the scrub column as a reflux stream. The second stream of liquefied first overhead forms an LNG product. The further stream of liquefied first overhead is used to provide or generate reflux for a de-methanizer column used to fractionate the bottoms liquid from the scrub column.
摘要:
A feed gas is liquefied using a closed loop refrigeration system in which a cooled compressed gaseous refrigerant stream (150) is expanded (136) to provide a first expanded gaseous refrigerant stream (154) that is substantially vapor and is used to cool and substantially liquefy a feed gas stream (100) through indirect heat exchange (110). The substantially liquefied feed gas stream (102) preferably is subcooled through indirect heat exchange (112) against a second expanded gaseous refrigerant stream (172) that preferably also is substantially vapor and can be provided by a cooled compressed gaseous refrigerant stream (170) or by a portion of the first expanded gaseous refrigerant stream (152). Cooling duty for the compressed gaseous refrigerant stream (146) is provided by a portion (160) of the first expanded gaseous refrigerant stream (152), gaseous refrigerant (156) partially warmed by said heat exchange (110) against feed gas, and/or second expanded gaseous refrigerant stream (174) warmed by said subcooling (112).
摘要:
A natural gas liquefaction system, the system comprising a first precooling refrigeration system (106) that accepts at least a natural gas feed stream (102), a second precooling refrigeration system (108) that accepts at least a first refrigerant stream (104); and a cryogenic heat exchanger (146) fluidly connected to the first precooling refrigeration system and the second precooling refrigeration system that accepts the natural gas feed stream (150) from the first precooling refrigeration system and the first refrigerant stream (138) from the second precooling refrigeration system to liquefy the natural gas feed stream (166), where the second precooling refrigeration system accepts only stream(s) having a composition different from the stream(s) accepted by the first precooling refrigeration system.
摘要:
Crude helium (70), liquefied natural gas product (90), and synthesis gas (81) are obtained from natural gas (1) by separating (11) a fluid (10) obtained by cooling natural gas into a vapor (42), from which crude helium is derived, and a liquid (19), which is separated (23) into a vapor (26) for reaction (80) to produce synthesis gas and a liquid (29) providing liquefied natural gas.
摘要:
Crude helium (70), liquefied natural gas product (90), and synthesis gas (81) are obtained from natural gas (1) by separating (11) a fluid (10) obtained by cooling natural gas into a vapor (42), from which crude helium is derived, and a liquid (19), which is separated (23) into a vapor (26) for reaction (80) to produce synthesis gas and a liquid (29) providing liquefied natural gas.
摘要:
Refrigeration process for gas liquefaction which utilizes one or more vaporizing refrigerant cycles to provide refrigeration below about -40 DEG C and a gas expander cycle to provide refrigeration below about -100 DEG C. Each of these two types of refrigerant systems is utilized in an optimum temperature range which maximizes the efficiency of the particular system. A significant fraction of the total refrigeration power required to liquefy the feed gas (typically more than 5% and often more than 10% of the total) can be consumed by the vaporizing refrigerant cycles. The invention can be implemented in the design of a new liquefaction plant or can be utilized as a retrofit or expansion of an existing plant by adding gas expander refrigeration circuit to the existing plant refrigeration system.
摘要:
Refrigeration process for gas liquefaction which utilizes one or more vaporizing refrigerant cycles to provide refrigeration below about -40°C and a gas expander cycle to provide refrigeration below about -100°C. Each of these two types of refrigerant systems is utilized in an optimum temperature range which maximizes the efficiency of the particular system. A significant fraction of the total refrigeration power required to liquefy the feed gas (typically more than 5% and often more than 10% of the total) can be consumed by the vaporizing refrigerant cycles. The invention can be implemented in the design of a new liquefaction plant or can be utilized as a retrofit or expansion of an existing plant by adding gas expander refrigeration circuit to the existing plant refrigeration system.
摘要:
Described herein are methods and systems for removing natural gas liquids from a natural gas feed stream and for liquefying the natural gas feed stream so as to produce a liquefied natural gas (LNG) stream and a natural gas liquids (NGL) stream.