摘要:
To provide an ion exchange membrane for alkali chloride electrolysis which has high membrane strength and low membrane resistance, thereby capable of reducing the electrolysis voltage during alkali chloride electrolysis. In this ion exchange membrane (1) for alkali chloride electrolysis, a reinforcing material 20 formed by weaving reinforcing yarns 22 and sacrificial yarns 24 is disposed in a layer (S) 14, and layer (S) 14 has elution portions 28 formed by elution of at least portions of the sacrificial yarns 24. In a cross section perpendicular to reinforcing yarns of the warp, the average distance (d1) from the center of a reinforcing yarn 22 to the center of the adjacent reinforcing yarn 22, the total area (P) obtained by adding the cross-sectional area of an elution portion 28 and the cross-sectional area of a sacrificial yarn 24 remaining in the elution portion 28, the number (n) of elution portions between adjacent reinforcing yarns 22, and the ion exchange capacity of a layer (Sa) located on the most anode side in the layer (S) 14 during alkali chloride electrolysis, are controlled to be within specific ranges, respectively.
摘要:
To provide an ion exchange membrane for alkali chloride electrolysis for which membrane strength is increased while membrane resistance is reduced to reduce electrolysis voltage during alkali chloride electrolysis and which prevents peeling between layers (S) and a layer (C). The ion exchange membrane for alkali chloride electrolysis comprises a layer (C) which comprises a fluorinated polymer having carboxylic acid functional groups, at least two layers (S) which comprise a fluorinated polymer having sulfonic acid functional groups, and a reinforcing material, wherein the layers (S) include a layer (Sa) and a layer (Sb), the layer (Sa) is a layer which is adjacent to the layer (C), the layer (Sb) is a layer which is not adjacent to the layer (C), the reinforcing material is disposed in the layer (Sb) substantially in parallel to the layer (Sb) in a state not in contact with the layer (Sa), and the ion exchange capacity of the layer (Sa) is lower than the ion exchange capacity of the layer (Sb).
摘要:
To provide a method whereby it is possible to efficiently produce an ion exchange membrane for alkali chloride electrolysis, which has high current efficiency and high alkali resistance at the time of electrolyzing an alkali chloride. This is a method for producing an ion exchange membrane 1 for alkali chloride electrolysis, having a layer (C) 12 containing a fluorinated polymer (A) having carboxylic acid type functional groups, by immersing an ion exchange membrane precursor film having a precursor layer (C') containing a fluorinated polymer (A') having groups convertible to carboxylic acid type functional groups, in an aqueous alkaline solution comprising an alkali metal hydroxide, a water-soluble organic solvent and water, and subjecting the groups convertible to carboxylic acid type functional groups to hydrolysis treatment to convert them to carboxylic acid type functional groups, wherein the concentration of the water-soluble organic solvent is from1 to 60 mass% in the alkaline aqueous solution (100 mass%); the proportion of structural units having carboxylic acid type functional groups in the fluorinated polymer (A) is from 14.00 to 14.50 mol%; and the resistivity in the layer (C) 12 is from 3.0×10 3 to 25.0×10 3 Ω·cm.
摘要:
To provide a production method whereby an ion exchange membrane for alkali chloride electrolysis can be obtained which has high current efficiency, little variation in current efficiency and high alkaline resistance. This is a method for producing an ion exchange membrane 1 having a layer (C) 12 containing a fluorinated polymer (A) having carboxylic acid type functional groups, by immersing an ion exchange membrane precursor film having a precursor layer (C') containing a fluorinated polymer (A') having groups convertible to carboxylic acid type functional groups, in an aqueous alkaline solution comprising an alkali metal hydroxide, a water-soluble organic solvent and water, and converting the groups convertible to carboxylic acid type functional groups to carboxylic acid functional groups, wherein the concentration of the water-soluble organic solvent is from 1 to 60 mass% in the aqueous alkaline solution (100 mass%); the temperature of the aqueous alkaline solution is at least 40°C and less than 80°C; and the proportion of structural units having carboxylic acid type functional groups in the fluorinated polymer (A) is from 13.0 to 14.50 mol% in all structural units (100 mol%) in the fluorinated polymer (A).
摘要:
To provide a process for producing an ion exchange membrane for electrolysis which has a low membrane resistance and which is capable of reducing the electrolysis voltage during the electrolysis, even if the membrane strength is increased, an ion exchange membrane for electrolysis, a precursor membrane of an ion exchange membrane for electrolysis, and an electrolysis apparatus. In a fluorinated polymer having groups convertible to ion exchange groups, a reinforcing fabric 20A formed by weaving covered yarns 21 each comprising a reinforcing fabric 22 and a sacrificial material covering at least a portion of the outer peripheral surface of the reinforcing yarn 22, to produce a precursor membrane of an ion exchange membrane, and from the precursor membrane, at least a portion of the sacrificial material in the reinforcing fabric is eluted to form a reinforcing material and at the same time, the groups convertible to ion exchange groups are converted to ion exchange groups, to produce an ion exchange membrane for electrolysis.
摘要:
To provide an ion exchange membrane for alkali chloride electrolysis which has a low membrane resistance and which is capable of reducing the electrolysis voltage during the alkali chloride electrolysis, while increasing the membrane strength. An ion exchange membrane 1 for alkali chloride electrolysis wherein a reinforcing material 20 obtained by weaving with reinforcing yarns 22 and sacrificial yarns 24 is embedded in a fluoropolymer having ion exchange groups, the ion exchange membrane 1 comprises elution holes (28) formed by eluting at least a portion of a material of the sacrificial yarns 24, and in a cross section perpendicular to the length direction of the yarns, the total area (S) obtained by adding the cross-sectional area of an elution hole 28 and the cross-sectional area of a sacrificial yarn 24 remaining in the elution hole 28 is from 500 to 1,200 µm 2 , and the number (n) of elution holes 28 between adjacent reinforcing yarns 22 is at least 10.
摘要:
To provide a method capable of efficiently producing an ion exchange membrane for alkali chloride electrolysis which has high current efficiency, little variation in current efficiency and high alkaline resistance. This is a method for producing an ion exchange membrane 1 having a layer (C) 12 containing a fluorinated polymer (A) having carboxylic acid type functional groups, by immersing an ion exchange membrane precursor film having a precursor layer (C') containing a fluorinated polymer (A') having groups convertible to carboxylic acid type functional groups, in an aqueous alkaline solution comprising an alkali metal hydroxide, a water-soluble organic solvent and water, wherein the proportion of structural units having carboxylic acid type functional groups in the fluorinated polymer (A) is from 13.0 to 14.50 mol%; in the layer (C) 12, the value of resistivity is from 4.0×10 3 to 25.0×10 3 Ω·cm, and the variation in resistivity is at most 4.0×10 3 Ω·cm, and the concentration of the water-soluble organic solvent is from 1 to 60 mass% in the alkaline aqueous solution.
摘要:
To provide an ion exchange membrane for alkali chloride electrolysis, which has low membrane resistance and which reduces the electrolysis voltage during alkali chloride electrolysis, even if the spacing between reinforcing yarns is made narrow to increase the membrane strength. This ion exchange membrane 1 for alkali chloride electrolysis comprises a fluoropolymer containing ion exchange groups; a reinforcing material embedded in the fluoropolymer and formed of reinforcing yarns and optionally contained sacrificial yarns; and elution holes of the sacrificial yarns present between the reinforcing yarns, wherein in a cross section perpendicular to the length direction of the reinforcing yarns forming the reinforcing material, the average distance (d1) from the center of a reinforcing yarn 22 to the center of the adjacent reinforcing yarn 22 is from 750 to 1,000 µm, the total area (S) obtained by adding the cross-sectional area of an elution hole 28 and the cross-sectional area of a sacrificial yarn 24 remaining in the elution hole 28 is from 500 to 5,000 µm 2 per elution hole, and the number n of elution holes 28 between adjacent reinforcing yarns 22 is from 4 to 6.