摘要:
A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit. Another embodiment of the disclosure performs simultaneous, and independent, compensation of second-order distortions generated by both the dispersion-slope of a first optical component and the dispersion of a second optical component. Other embodiments of the disclosure perform adaptive predistortion for compensation of distortions generated by the dispersion-slope of a first optical component and the dispersion of a second optical component to maintain optimum compensation even if the dispersion properties of the optical components change with time.
摘要:
Configuring a generic adaptable reconfigurable digital receiver having a programmable signal conditioner includes specifying a number of output RF channels; specifying an RF bandwidth of an output channel; and selecting a digital to analog sampling rate of a digital to analog convertor of the programmable signal conditioner as a function of the RF bandwidth of the output channel using a processor/demux of the generic adaptable reconfigurable digital receiver.
摘要:
Methods and apparatus are described for DWDM transport of CATV and digital signals over optical fiber in low-dispersion spectral regions. A method includes transporting a plurality of optical carriers of different wavelengths over an optical link using wavelength division multiplexing, the optical link including a plurality of optical segments. The plurality of optical channel center wavelengths defined by the plurality of optical carriers are clustered proximate an average value of a zero-dispersion wavelength of the optical link, or near either a) a low wavelength edge or b) a high wavelength edge of a range of zero-dispersion wavelengths of the optical link and a plurality of optical channel center frequencies defined by the plurality of optical channel center wavelengths are non-uniformly spaced apart.
摘要:
Methods and apparatus are described for DWDM transport of CATV and digital signals over optical fiber in low-dispersion spectral regions. A method includes transporting a plurality of optical carriers of different wavelengths over an optical link using wavelength division multiplexing, the optical link including a plurality of optical segments. The plurality of optical channel center wavelengths defined by the plurality of optical carriers are clustered proximate an average value of a zero-dispersion wavelength of the optical link, or near either a) a low wavelength edge or b) a high wavelength edge of a range of zero-dispersion wavelengths of the optical link and a plurality of optical channel center frequencies defined by the plurality of optical channel center wavelengths are non-uniformly spaced apart.
摘要:
Configuring an optical point to multipoint communication network includes assigning a channel number Ci by modular arithmetic to each of a plurality of N access points, each of the plurality of N access points i) including a laser and ii) coupled to a hub having a shared optical receiver; and tuning the laser located in each of the plurality of N access points to a wavelength λui that is one of a set of M wavelengths as a function of the channel number assigned to the access point in which the laser is located, a channel spacing &Dgr;λ and an intrinsic wavelength λuin of the laser to prevent optical beat interference at the shared optical receiver.