-
公开(公告)号:EP3245652B1
公开(公告)日:2019-07-10
申请号:EP16869294.5
申请日:2016-11-23
申请人: Baidu USA LLC
发明人: CATANZARO, Bryan , CHEN, Jingdong , CHRZANOWSKI, Mike , ELSEN, Erich , ENGEL, Jesse , FOUGNER, Christopher , HAN, Xu , HANNUN, Awni , PRENGER, Ryan , SATHEESH, Sanjeev , SENGUPTA, Shubhabrata , YOGATAMA, Dani , WANG, Chong , ZHAN, Jun , ZHU, Zhenyao , AMODEI, Dario
IPC分类号: G10L15/16 , G10L15/06 , G10L15/08 , G10L15/183
-
公开(公告)号:EP3245597A1
公开(公告)日:2017-11-22
申请号:EP16869302.6
申请日:2016-11-23
申请人: Baidu USA LLC
发明人: CATANZARO, Bryan , CHEN, Jingdong , CHRZANOWSKI, Mike , ELSEN, Erich , ENGEL, Jesse , FOUGNER, Christopher , HAN, Xu , HANNUN, Awni , PRENGER, Ryan , SATHEESH, Sanjeev , SENGUPTA, Shubhabrata , YOGATAMA, Dani , WANG, Chong , ZHAN, Jun , ZHU, Zhenyao , AMODEI, Dario
摘要: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
-
公开(公告)号:EP3245597B1
公开(公告)日:2020-08-26
申请号:EP16869302.6
申请日:2016-11-23
申请人: Baidu USA LLC
发明人: CATANZARO, Bryan , CHEN, Jingdong , CHRZANOWSKI, Mike , ELSEN, Erich , ENGEL, Jesse , FOUGNER, Christopher , HAN, Xu , HANNUN, Awni , PRENGER, Ryan , SATHEESH, Sanjeev , SENGUPTA, Shubhabrata , YOGATAMA, Dani , WANG, Chong , ZHAN, Jun , ZHU, Zhenyao , AMODEI, Dario
IPC分类号: G10L15/14 , G10L15/16 , G10L15/183 , G06F40/40
-
公开(公告)号:EP3245652A1
公开(公告)日:2017-11-22
申请号:EP16869294.5
申请日:2016-11-23
申请人: Baidu USA LLC
发明人: CATANZARO, Bryan , CHEN, Jingdong , CHRZANOWSKI, Mike , ELSEN, Erich , ENGEL, Jesse , FOUGNER, Christopher , HAN, Xu , HANNUN, Awni , PRENGER, Ryan , SATHEESH, Sanjeev , SENGUPTA, Shubhabrata , YOGATAMA, Dani , WANG, Chong , ZHAN, Jun , ZHU, Zhenyao , AMODEI, Dario
IPC分类号: G10L15/16 , G10L15/06 , G10L15/08 , G10L15/183
CPC分类号: G10L15/16 , G06N3/0445 , G06N3/084 , G10L15/02 , G10L15/063 , G10L15/14 , G10L15/183 , G10L15/197 , G10L25/18 , G10L25/21 , G10L2015/0635
摘要: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
-
-
-