Abstract:
The invention provides a resin composition comprising (A) a polymer comprising at least one primary carbamate functional group and one or more 10 quaternary ammonium groups, and (B) a carbarnate functional reactive additive that is generated in situ during the production of polymer (A). The invention also provides a method of making a electrocoat resin composition comprising (A) a polymer having at least one primary carbonate group and one or more quaternary ammoniwn groups and (B) a carbarnate functional 1 5 reactive additive, the method comprising reacting a monomeric polyisocyanate, and a compound comprising at least one group that is reactive with isocyanate and at least one carbamate group, so as to produce both (1) an intermediate product having at least one carbamate functional group and at least one isocyanate functional group, as well as (2) a carbamate functional reactive additive having no isocyanate 20 functionality, reacting said intermediate product with a compound having at least one epoxy group and at least one isocyanate reactive group, said reaction occuring in the presence of the reactive additive so as to produce a carbamate functional resin having at least one epoxy group, reacting said at least one epoxy group with a tertiary amine compound in the presence of an acid to provide a carbamate functional resin having 25 one or more quaternary ammonium groups, said reaction occurring in the presence of the reactive additive to provide a resin composition comprising (A) a carbamate functional resin having one or more quaternary ammonium groups and (B) a carbarnate functional reactive additive. Finally, the invention provides electrocoat coating compositions comprising 30 the resin composition of the invention and a method of using said electrocoat coating compositions.
Abstract:
The invention provides powder coatings having at least 25% by weight of an epoxy functional particulate component (a) having a Tg of at least 50°C and of the structure (I), wherein n is a number from 0 to 50, and R1 is selected form the group consisting of linear, branched or cycloaliphatic C2-C20 alkyl groups and mixtures thereof, based on the total weight of all epoxy functional particulate components in the powder coating composition. The powder-coating compositions of the invention are suitable for use as primers over electrocoat and under composite basecoat/clearcoat systems. Powder primers of the invention provide simultaneous improvements in yellowing, chip resistance, UV durability and color stability.
Abstract:
An electrocoat coating composition comprising an electrodepositable resin that has functionality reactive with isocyanate and a curing agent having at least one allophanate groups is described. The invention also provides a method of applying the composition of the invention to a substrate and curing the applied coating.
Abstract:
A crosslinker for polymerizing a film-forming material including an alkyl or aromatic compound comprising at least two functional groups reactive with a film-forming resin and at least one pendent group having a nonionic metal coordinating structure. Coating compositions can include a film-forming material and the crosslinker. The coating compositions can be used to coat a substrate, such as a metal substrate. Applied coating layers on substrates can be cured to form coating films.
Abstract:
The invention provides a polymer (a) having a polymer backbone having appended thereto at least one carbamate functional group, the polymer represented by randomly repeating units according to formula (I), wherein R1 represents H or CH3, R2 represents H, alkyl, or cycloalkyl, L represents a divalent linking group, A represents repeat units comprising at least one repeat unit having a pendant carboxylic acid group, x represents 10 to 90 weight %, and y represents 90 to 10 weight %. The invention further provides an anodic electrocoat coating composition comprising an aqueous dispersion of a polymer (a) and (b) a compound having a plurality of functional groups that are reactive with said carbamate groups, wherein the repeat units A of polymer (a) having a pendant carboxylic acid group are base-salted. Finally, the invention provides an anodic electrodeposition method requiring 1) immersing a conductive substrate in a coating composition comprising, in an aqueous medium, polymer (a) and (b) a compound having a plurality of functional groups that are reactive with said carbamate groups, 2) applying a voltage between a cathode and the conductive substrate, and 3) removing the substrate from the coating composition.
Abstract:
An electrocoat coating composition comprising an electrodepositable resin that has functionality reactive with isocyanate and a curing agent having at least one allophanate groups is described. The invention also provides a method of applying the composition of the invention to a substrate and curing the applied coating.
Abstract:
The invention provides a polymer (a) having a polymer backbone having appended thereto at least one carbamate functional group, the polymer represented by randomly repeating units according to the formula: (I) R1 represents H or CH3, R2 represents H, alkyl, or cycloalkyl, L represents a divalent linking group, A represents repeat units comprising at least one repeat unit having a pendant cationic salting group, x represents 10 to 90 weight %, and y represents 90 to 10 weight %. The invention further provides a cathodic electrocoat coating composition comprising an aqueous dispersion of a polymer (a) and (b) a compound having a plurality of functional groups that are reactive with said carbamate groups, wherein the repeat units A of polymer (a) having a pendant cationic salting group are salted with an acid. Finally, the invention provides a cathodic electrodeposition method requiring 1) immersing a conductive substrate in a coating composition comprising, in an aqueous medium, a polymer (a) and (b) a compound having a plurality of functional groups that are reactive with said carbamate groups, 2) applying a voltage between an anode and the conductive substrate, and 3) removing the substrate from the coating composition.