Abstract:
A carbonaceous substance powder gasification system and gasification method. The system comprises a carbonaceous substance reaction apparatus and a gas return apparatus used for raising the pressure of some of a raw syngas cooled and preliminarily purified downstream of the reaction apparatus, then blending with high-temperature raw syngas upstream of the reaction apparatus and reducing the temperature. The method comprises reacting in a gasification reaction apparatus the carbonaceous substance and a gasification agent to generate raw syngas and ash and slag, some of the high-temperature raw syngas moving downstream with fly ash and liquid slag, and some of the high-temperature syngas moving upstream with fly ash; the downstream part of the high-temperature raw syngas being cooled, preliminarily purified and deslagged, then pressurized, and the wet raw syngas being injected into the system and blended with the upstream high-temperature raw syngas; the remainder of the high-temperature syngas moving upstream with fly ash and blending and cooling with the low-temperature wet syngas injected by the preliminary cooler, and optionally being entered into the cooling reaction stage; the cooled or cooling-reacted raw syngas continuing upstream, passing through the upper cooling stage and cooling again and ash being removed to obtain the raw syngas substance.
Abstract:
A carbonaceous substance dry powder gasification device and method, the device comprising from bottom to top a lower cooling and purification section (1), a gasification reaction section (2), a cooling reaction section (3) and an upper cooling and purification section (4); an initial cooling device is disposed at the connection between the cooling reaction section and the gasification reaction section; and a plurality of nozzles are circumferentially arranged in the gasification reaction section. The method comprises: a gasification reaction is conducted between a carbonaceous substance and an oxygenated gasifying agent to generate crude synthesis gas and ash; part of the crude synthesis gas and most of the ash go downstream for cooling and gasification, and the cooled and ash removed crude synthesis gas is transferred to subsequent processes, and the quenched ash is discharged through an ash outlet; the remaining crude synthesis gas and fly ash go upstream to mix with a cooling substance for cooling, and then are transferred to the cooling reaction section for reacting with the incompletely reacted carbon and added gasification agent; the crude synthesis gas and the fly ash are cooled and purified to remove the fly ash, and the clean low-temperature crude synthesis gas is transferred to subsequent processes. The method avoids ash blocking at an ash outlet in an upstream air-exhaust method, and also avoids overheating at the top in a downstream air-exhaust method, thus improving the carbon conversion rate.