摘要:
The present invention relates to reducible porous crystalline solids, constituted of a metal-organic framework (MOF), for the separation of mixtures of molecules having different degrees and/or a different number of unsaturations with a selectivity that can be adjusted by controlling the reduction of the MOF. The MOF solids of the present invention have, after reduction, a strong affinity for molecules containing at least one unsaturated group. They may be used in various separation processes, especially those concerning hydrocarbons.
摘要:
The invention relates to solids made of a porous crystalline metal-organic framework (MOF) loaded with at least one gas of biological interest, and to a method for preparing the same. The MOF solids of the present invention are capable of adsorbing and releasing in a controlled manner gases having a biological interest. They can be used in the pharmaceutical field and/or for applications in the cosmetic field. They can also be used in the food industry.
摘要:
The invention relates to solids made of a porous crystalline metal-organic framework (MOF) loaded with at least one gas of biological interest, and to a method for preparing the same. The MOF solids of the present invention are capable of adsorbing and releasing in a controlled manner gases having a biological interest. They can be used in the pharmaceutical field and/or for applications in the cosmetic field. They can also be used in the food industry.
摘要:
The present invention relates to the use of solids consisting of a metal-organic framework (MOF) and having the units of the following formula (I): MmOkXILp as a nitrogen-oxide catalyst. The present invention also relates to devices for enabling the implementation of said use. The nitrogen oxides in question are nitrogen monoxide and nitrogen dioxide, collectively referred to as NOx. The MOF solids of the present invention are advantageously capable of removing nitrogen oxides from a liquid or gaseous effluent, for example from water, from the exhaust gases of a vehicle, factory, workshop, laboratory, stored products, urban air vents, etc., without any reducing agent and at a low temperature. The DeNOx catalysis is a major issue for our societies. The invention can be used for reducing or even avoiding the consequences for public health of the toxic NOx gases resulting from human activity.