Abstract:
A hydrocracking catalyst is provided comprising: a zeolite beta having an OD acidity of 20 to 50 μmol/g and an average crystal size from 300 to 800 nanometers; a zeolite USY; wherein a wt % of the zeolite beta is less than the wt % of the zeolite USY; a support comprising an amorphous silica aluminate and a second support material; and at least one metal selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table. A process for hydrocracking a hydrocarbonaceous feedstock is provided, comprising: contacting the hydrocarbonaceous feedstock with the hydrocracking catalyst under hydrocracking conditions to produce a hydrocracked effluent that comprises middle distillates. A method for making the hydrocracking catalyst is also provided.
Abstract:
d. at least one metal selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table. A process for hydrocracking using the hydrocracking catalyst to produce middle distillates is provided. A method for making the hydrocracking catalyst is also provided.
Abstract:
The present invention is generally directed to diester-based base oils and base oil blends with improved cold flow properties and improved Noack. The diesters employed have a number a performance benefits in lubricant applications - among them: biodegradability, extreme temperature performance, oxidative stability, solubility for additives and deposit and sludge precursors, flash and fire points. However, ester usage in lubricants has been quite limited due to their high cost. We utilize new proprietary diesters, structurally different from traditional diesters, which are made from fatty acids and alpha olefins in simple processing steps, yet feature performance similar to more traditional lubricant esters.