摘要:
A process and apparatus for producing lower carbon olefins and BTX by catalytic pyrolysis of hydrocarbon-containing feedstock oil, and the process comprises the steps: cutting the hydrocarbon-containing feedstock oil into a light distillate oil and a heavy distillate oil; introducing the light distillate oil and a first catalyst into a down-flow reactor to perform a catalytic pyrolysis to produce a stream after the first catalytic pyrolysis; subjecting the stream after the first catalytic pyrolysis to a gas-solid separation to produce a first reaction hydrocarbon product and a first spent catalyst; or, introducing the stream after the first catalytic pyrolysis into a fluidized bed reactor to perform a catalytic pyrolysis, and then subjecting to a gas-solid separation to produce a second reaction hydrocarbon product and a second spent catalyst; introducing a continuous catalyst, the heavy distillate oil and a second catalyst into an up-flow reactor to perform a catalytic pyrolysis, and then subjecting to a gas-solid separation to produce a third reaction hydrocarbon product and a third spent catalyst; separating out lower carbon olefins and light aromatics from reaction hydrocarbon products, and separating out a light olefin fraction, and returning the light olefin fraction to the fluidized bed reactor or the up-flow reactor. The process can significantly increase the yields of lower carbon olefins and light aromatics as well as the economy of the apparatus.
摘要:
A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of the organic oxygenate, thus ensuring the continuous catalytic conversion of the organic oxygenate.
摘要:
A process for the catalytic conversion of hydrocarbons, said process comprising the following steps: a feedstock of hydrocarbons is contacted with a hydrocarbon-converting catalyst to conduct a catalytic cracking reaction in a reactor, then the reaction products are taken from said reactor and fractionated to give light olefins, gasoline, diesel, heavy oil and other saturated hydrocarbons with low molecular weight, wherein said hydrocarbon-converting catalyst comprises, based on the total weight of the catalyst, 1-60 wt% of a zeolite mixture, 5-99 wt% of a thermotolerant inorganic oxide and 0-70 wt% of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt% of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt% of a zeolite having a MFI structure and 0-74 wt% of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent of the oxides as (0-0.3)Na 2 O·(0.5-10)Al 2 O 3 ·(1.3-10)P 2 O 5 ·(0.7-15)M x O y ·(64-97)SiO 2 , in which the transition metal M is one or more selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn; x represents the atom number of the transition metal M, and y represents a number needed for satisfying the oxidation state of the transition metal M. The process of the present invention has a higher ability to convert petroleum hydrocarbon in a higher yield for light olefins, particularly for propylene.
摘要:
Disclosed is a catalytic cracking process and a catalyst system, the process comprising a step of contacting a cracking feedstock with a catalytic cracking catalyst in the presence of a radical initiator for reaction under catalytic cracking conditions; wherein the radical initiator comprises a dendritic polymer and/or a hyperbranched polymer, the dendritic polymer and the hyperbranched polymer each independently has a degree of branching of about 0.3-1, and the dendritic polymer and the hyperbranched polymer each independently has a weight average molecular weight of greater than about 1000. The catalytic cracking process is beneficial to enhancing and accelerating the free radical cracking of petroleum hydrocarbon and promoting the regulation of cracking activity and product distribution; by using the process disclosed herein, the conversion of catalytic cracking can be improved, the yields of ethylene and propylene can be increased, and the yield of coke can be reduced.
摘要:
A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of the organic oxygenate, thus ensuring the continuous catalytic conversion of the organic oxygenate.
摘要:
A process for the catalytic conversion of hydrocarbons, said process comprising the following steps: a feedstock of hydrocarbons is contacted with a hydrocarbon-converting catalyst to conduct a catalytic cracking reaction in a reactor, then the reaction products are taken from said reactor and fractionated to give light olefins, gasoline, diesel, heavy oil and other saturated hydrocarbons with low molecular weight, wherein said hydrocarbon-converting catalyst comprises, based on the total weight of the catalyst, 1-60 wt% of a zeolite mixture, 5-99 wt% of a thermotolerant inorganic oxide and 0-70 wt% of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt% of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt% of a zeolite having a MFI structure and 0-74 wt% of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent of the oxides as (0-0.3)Na 2 O·(0.5-10)Al 2 O 3 ·(1.3-10)P 2 O 5 ·(0.7-15)M x O y ·(64-97)SiO 2 , in which the transition metal M is one or more selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn; x represents the atom number of the transition metal M, and y represents a number needed for satisfying the oxidation state of the transition metal M. The process of the present invention has a higher ability to convert petroleum hydrocarbon in a higher yield for light olefins, particularly for propylene.