摘要:
A machine learning model is to be trained by a plurality of devices in a network. A set of training devices are identified, with each of the training devices having a local set of training data. An instruction is then sent to each of the training devices that is configured to cause a training device to receive model parameters from a first training device in the set, use the parameters with at least a portion of the local set of training data to generate new model parameters, and forward the new model parameters to a second training device in the set. Model parameters from the training devices are also received that have been trained using a global set of training data that includes the local sets of training data on the training devices. Machine learning (e.g., artificial neural networks) is used to detect attacks on networks (e.g., DoS, Denial of service in Low Power and Lossy Network, LLN).
摘要:
In one embodiment, a device in a network identifies a set of traffic flow records that triggered an attack detector. The device selects a subset of the traffic flow records and calculates aggregated metrics for the subset. The device provides the aggregated metrics for the subset to the attack detector to generate an attack detection determination for the subset of traffic flow records. The device identifies one or more attack traffic flows from the set of traffic flow records based on the attack detection determination for the subset of traffic flow records.
摘要:
In one embodiment, a network node receives a voting request from a neighboring node that indicates a potential network attack. The network node determines a set of feature values to be used as input to a classifier based on the voting request. The network node also determines whether the potential network attack is present by using the set of feature values as input to the classifier. The network node further sends a vote to the neighboring node that indicates whether the potential network attack was determined to be present.
摘要:
In one embodiment, possible voting nodes in a network are identified. The possible voting nodes each execute a classifier that is configured to select a label from among a plurality of labels based on a set of input features. A set of one or more eligible voting nodes is selected from among the possible voting nodes based on a network policy. Voting requests are then provided to the one or more eligible voting nodes that cause the one or more eligible voting nodes to select labels from among the plurality of labels. Votes are received from the eligible voting nodes that include the selected labels and are used to determine a voting result.
摘要:
In one embodiment, a first data set is received by a network device that is indicative of the statuses of a plurality of network devices when a type of network attack is not present. A second data set is also received that is indicative of the statuses of the plurality of network devices when the type of network attack is present. At least one of the plurality simulates the type of network attack by operating as an attacking node. A machine learning model is trained using the first and second data set to identify the type of network attack. A real network attack is then identified using the trained machine learning model.