摘要:
A playback system in a digital cinema network synchronizes the presentation of visual and aural content by deriving timing information for packets of information that are conveyed in video and audio data streams, examining the timing information to determine if any misalignment between the two data streams is likely to be perceptible and, if the misalignment is deemed to be perceptible, introducing delays into one or both data streams to correct the misalignment. If the audio data stream precedes the video data stream, the audio data stream is delayed by an integer number of audio sample periods. If the video data stream precedes the audio data stream, the video data stream is delayed by an integer number of video frames and the audio data stream is delayed by an integer number of audio sample periods.
摘要:
Given an input progressive sequence, a video encoder creates a dual-layer stream that combines a backwards-compatible interlaced video stream layer with an enhancement layer to reconstruct full-resolution progressive video. Given two consecutive frames in the input progressive sequence, vertical processing generates a top field-bottom field (TFBF) frame in a base layer (BL) TFBF sequence, and horizontal processing generates a side-by-side (SBS) frame in an enhancement layer (EL) SBS video sequence. The BL TFBF and the EL SBS sequences are compressed together to create a coded, backwards compatible output stream.
摘要:
The present invention relates to a method and system for generating and retargeting a three-dimensiona video signal for use on a target three-dimensional display device, wherein the three-dimensional video signal comprises three-dimensional video data suitable for driving a multi-view display device and reference disparity mapping data, the reference disparity mapping data indicative of a disparity mapping for the three-dimensional video data for a reference three-dimensional display device and wherein a target disparity mapping is derived based on the reference disparity mapping and characteristics of the reference three-dimensional display device and corresponding characteristics of the target three-dimensional display device, the resulting target disparity mapping is used for retargeting the three-dimensional video data using the target disparity mapping data into a target three-dimensional video data.
摘要:
Stereoscopic video data and corresponding depth map data for stereoscopic and auto-stereoscopic displays are coded using a coded base layer and one or more coded enhancement layers. Given a 3D input picture and corresponding input depth map data, a side-by-side and a top-and-bottom picture are generated based on the input picture. Using an encoder, the side-by-side picture is coded to generate a coded base layer Using the encoder and a texture reference processing unit (RPU), the top-and-bottom picture is encoded to generate a first enhancement layer, wherein the first enhancement layer is coded based on the base layer stream, and using the encoder and a depth-map RPU, depth data for the side-by-side picture are encoded to generate a second enhancement layer, wherein the second enhancement layer is coded based on to the base layer. Alternative single, dual, and multi-layer depth map delivery systems are also presented.
摘要:
The present invention relates to a method and system for generating and retargeting a three-dimensiona video signal for use on a target three-dimensional display device, wherein the three-dimensional video signal comprises three-dimensional video data suitable for driving a multi-view display device and reference disparity mapping data, the reference disparity mapping data indicative of a disparity mapping for the three-dimensional video data for a reference three-dimensional display device and wherein a target disparity mapping is derived based on the reference disparity mapping and characteristics of the reference three-dimensional display device and corresponding characteristics of the target three-dimensional display device, the resulting target disparity mapping is used for retargeting the three-dimensional video data using the target disparity mapping data into a target three-dimensional video data.
摘要:
A 3D display is characterized by a quality of viewing experience (QVE) mapping which represents a display-specific input-output relationship between input depth values and output QVE values. Examples of QVE mappings based on a metric of “viewing blur” are presented. Given reference depth data generated for a reference display and a representation of an artist's mapping function, which represents an input-output relationship between original input depth data and QVE data generated using a QVE mapping for a reference display, a decoder may reconstruct the reference depth data and apply an inverse QVE mapping for a target display to generate output depth data optimized for the target display.
摘要:
3D Images may be encoded into reduced resolution image data in a base layer and enhancement layer (EL) image data in one or more enhancement layers. Different types of data compositions may be used in the EL image data. The different types of data compositions may include unfiltered full resolution image data for one or both of left eye and right eye perspectives, or unfiltered full resolution image data for a color channel, e.g., luminance channel, or unfiltered full resolution image data for selected portions of image frames, or fallback data compositions. Based on deciding factors including bitrate requirements and bandwidth constraints, different types of data compositions may be alternatively used by an upstream device to deliver the best possible 3D image data to a wide variety of downstream devices. The upstream device may inform a downstream device of specific types of data compositions with EL image data descriptors.
摘要:
Stereoscopic video data and corresponding depth map data for stereoscopic and auto-stereoscopic displays are coded using a coded base layer and one or more coded enhancement layers. Given a 3D input picture and corresponding input depth map data, a side-by-side and a top-and-bottom picture are generated based on the input picture. Using an encoder, the side-by-side picture is coded to generate a coded base layer Using the encoder and a texture reference processing unit (RPU), the top-and-bottom picture is encoded to generate a first enhancement layer, wherein the first enhancement layer is coded based on the base layer stream, and using the encoder and a depth-map RPU, depth data for the side-by-side picture are encoded to generate a second enhancement layer, wherein the second enhancement layer is coded based on to the base layer. Alternative single, dual, and multi-layer depth map delivery systems are also presented.