摘要:
A method for making working mold tools for use in a compression molding process for molding optical glass elements from high temperature glasses having T g 's in the range of from 400°C to 850°C. An yttria aluminosilicate glass is fabricated by traditional melting and casting processes to thereby make an amorphous base material having a minimum apparent viscosity of 10 15 poise at the temperature at which the optical glass elements are to be molded. A mold preform is made from the base material. A first surface figure for the optical element to be molded with the working mold tool is defined. A second surface figure for a master mold tool and a third surface figure for the working mold tool are computed based upon the first surface figure and the coefficients of thermal expansion of the optical element, the master mold tool, and the working mold tool, the temperature at which the working mold tool is molded, and the temperature at which the optical element is to be molded. A master mold tool is then ground and polished to achieve the second surface figure. The working mold tool is then molded from the mold preform using the master mold tool.
摘要:
A method and apparatus is disclosed for compression molding arrays optical elements which may be later singulated. The apparatus includes first and second mold halves with the second mold half having a central nest and a plurality of predetermined negative optical surface features therein. A glass preform is placed in the central nest and the first and second mold halves and the glass preform are heated to at least the glass transition temperature of the glass preform. The glass preform is then pressed between the first and second mold halves to thereby form an integral array of optical elements with each of the optical elements being a positive of the predetermined negative optical surface features. The integrally formed array of optical elements is then cooled to below the glass transition temperature and removed from the first and second mold halves.
摘要:
A prerecorded magnetic master web (54) and an unrecorded magnetic slave web (14), such as a photographic film having a magnetic coating, are brought into intimate contact for anhysteretic recording by wrapping the moving master web partially around a small diameter gimballed roller (66) positioned in close proximity to a rotating transfer drum (36); wrapping the moving slave web partially around a larger idler roller (34) positioned in close proximity to both the gimballed roller and the transfer drum; wrapping the slave web partially around the transfer drum with the master web wrapped outside the slave web; and evacuating a chamber or volume (68) formed among the webs, rollers and drum, to remove air from between the webs and cause them to converge into intimate contact at a nip up-stream of a signal transfer zone in which a magnetic head (70) applies a decaying magnetic field to cause anhysteretic transfer from the master web to the slave web.