摘要:
The present invention recognises and eliminates from a biomagnetic measurement signal interferences whose source is disposed in the direct vicinity of an object being measured. The invention utilises the SSS method that can be used to separate from one another the signals associated with the internal and external sources of a set of measurement sensors by calculating two series developments. The sources to be examined in the invention and disposed in the so-called intermediate space produce a component to both of the developments, and can, therefore, be detected by means of an analysis to be performed in a time domain. This division into components can be made using the Principal Component Analysis (PCA), the Independent Component Analysis (ICA) or the Singular Value Decomposition. Finally, the clarified interferences in the intermediate space can be eliminated from the measured signal using, for example, the linear algebraic orthogonal projection.
摘要:
The present invention recognises and eliminates from a biomagnetic measurement signal interferences whose source is disposed in the direct vicinity of an object being measured. The invention utilises the SSS method that can be used to separate from one another the signals associated with the internal and external sources of a set of measurement sensors by calculating two series developments. The sources to be examined in the invention and disposed in the so-called intermediate space produce a component to both of the developments, and can, therefore, be detected by means of an analysis to be performed in a time domain. This division into components can be made using the Principal Component Analysis (PCA), the Independent Component Analysis (ICA) or the Singular Value Decomposition. Finally, the clarified interferences in the intermediate space can be eliminated from the measured signal using, for example, the linear algebraic orthogonal projection.
摘要:
The invention relates to a method and device by means of which an irrotational, sourceless vector field can be expressed by a number of physically reasonable basis vectors as small as possible in such a manner that the measured signals can be unambiguously divided into signals of the irrotational, sourceless vector field that are caused by an interesting object or external interferences, as well as into a signal caused by the nonideality of the measuring device, which signal is not included in the model of the signal space describing an irrotational, sourceless vector field. The invention is based on the combining of two very fundamental mathematical regularities and applying in the processing of signal vectors of a multi-channel measuring device that measures an irrotational, sourceless vector field: on the Maxell’s equations of an irrotational, sourceless vector field, as well as on the convergence characteristics of series developments.