摘要:
The invention relates to a method for cleaning the surface of an alloy comprising a base metal and an alloying metal, comprising the steps of: (a) pigging said alloy surface; and thereafter (b) passivating said alloy by contacting said surface with a gas comprising steam for a time and at a temperature sufficient to form at least on mixed oxide layer on said alloy wherein said mixed metal oxide contains an average alloying metal content of from equal to the alloying metal content in said alloy up to 100% alloying metal. The method is particularly applicable in increasing the run length in a refinery process conducted in a unit having alloy surfaces susceptible to fouling.
摘要:
This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with, the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.
摘要:
This invention relates to process for increasing color quality and thermal stability of fuel. Fuel that is provided as a feedstock is contacted or treated with an acidic, ion-exchange resin to increase the color quality and stability of the fuel. The process provides the benefit of substantially increasing the long term quality of both color and oxidation (JFTOT) stability.
摘要:
The invention relates to a method for cleaning the surface of an alloy comprising a base metal and an alloying metal, comprising the steps of: (a) pigging said alloy surface; and thereafter (b) passivating said alloy by contacting said surface with a gas comprising steam for a time and at a temperature sufficient to form at least on mixed oxide layer on said alloy wherein said mixed metal oxide contains an average alloying metal content of from equal to the alloying metal content in said alloy up to 100% alloying metal. The method is particularly applicable in increasing the run length in a refinery process conducted in a unit having alloy surfaces susceptible to fouling.