摘要:
An apparatus and system disclosed herein provides detonation wave arrestor including a detonation wave deflector and a burst element. The detonation wave arrestor disclosed herein attenuates and defects the propagation of a detonation wave characterized by a supersonic flame front propagation. The detonation wave arrestor provides deflection of detonation wave towards the burst element. The rupture of the burst element provides venting of hot gases remaining from the detonation, thus providing separation and attenuation of combusted gas residuals. The detonation wave arrestor disclosed herein may be used in a combustible fuel delivery system.
摘要:
Monopropellant and pre-mixed bipropellant storage and supply systems for rocket engines and other work producing systems are subject to damage when detonation progresses upstream from a combustion chamber to and through supply lines. Interposing one or more micro porous or micro fluidic elements into the supply conduit can limit the flame front that accompanies such unintended detonation, but inevitably restrict the flow of the propellant to the combustion chamber. A tiered micro fluidic element where a bulk of the element has relatively large pores but forms a structurally robust supports a second, relatively thin region having appropriately small mean pore diameter provides an effective flashback barrier that can resist catastrophic failure during such detonations. Such elements can be used in isolation, or they can be incorporated into detonation wave arrestors or pressure wave-triggered cut-off valves or the like to decrease the incidence of unintended detonations.
摘要:
The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.