摘要:
A satellite communications system comprising a Hub station and a plurality of terminals, the system is configured to utilize a FWD link and a RTN link in accordance with adaptation techniques for relevant transmission properties (e.g. modulation, coding, transmission power, etc.) and to use adaptive margins to ensure proper reception of transmitted information under various link conditions. Methods are presented for determining said adaptive margins in real time or substantially in real time, and for setting relevant transmission properties in accordance with the determined margins. Adaptive margins may be determined either directly or following the determining of a link state for each of the FWD link and the RTN link.
摘要:
A satellite communications system comprising a Hub station and a plurality of terminals, the system is configured to utilize a FWD link and a RTN link in accordance with adaptation techniques for relevant transmission properties (e.g. modulation, coding, transmission power, etc.) and to use adaptive margins to ensure proper reception of transmitted information under various link conditions. Methods are presented for determining said adaptive margins in real time or substantially in real time, and for setting relevant transmission properties in accordance with the determined margins. Adaptive margins may be determined either directly or following the determining of a link state for each of the FWD link and the RTN link.
摘要:
A single, large-scale satellite access communication network may be configured as infrastructure for many small-scale subnets, wherein each subnet may be configured to serve a different organization (e.g. an SME) as a private network. Each subnet may be configured as a small star and/or mesh satellite data access network from the end-user perspective, yet all subnets may be configured to be part of the total large-scale network and share satellite bandwidth resources. Such configuration may yield significantly higher bandwidth efficiency, lower operation and equipment costs, minimized latency and ease of network operations for each of the small organizations sharing the large-scale network.
摘要:
A single, large-scale satellite access communication network may be configured as infrastructure for many small-scale subnets, wherein each subnet may be configured to serve a different organization (e.g. an SME) as a private network. Each subnet may be configured as a small star and/or mesh satellite data access network from the end-user perspective, yet all subnets may be configured to be part of the total large-scale network and share satellite bandwidth resources. Such configuration may yield significantly higher bandwidth efficiency, lower operation and equipment costs, minimized latency and ease of network operations for each of the small organizations sharing the large-scale network.
摘要:
A satellite communications system comprising a Hub station and a plurality of terminals, the system is configured to utilize a FWD link and a RTN link in accordance with adaptation techniques for relevant transmission properties (e.g. modulation, coding, transmission power, etc.) and to use adaptive margins to ensure proper reception of transmitted information under various link conditions. Methods are presented for determining said adaptive margins in real time or substantially in real time, and for setting relevant transmission properties in accordance with the determined margins. Adaptive margins may be determined either directly or following the determining of a link state for each of the FWD link and the RTN link.