MODEL-PLANT MISMATCH DETECTION WITH SUPPORT VECTOR MACHINE FOR CROSS-DIRECTIONAL PROCESS BEHAVIOR MONITORING
    1.
    发明公开
    MODEL-PLANT MISMATCH DETECTION WITH SUPPORT VECTOR MACHINE FOR CROSS-DIRECTIONAL PROCESS BEHAVIOR MONITORING 审中-公开
    支持向量机的模型 - 工件不匹配检测方法在横向过程行为监测中的应用

    公开(公告)号:EP3296823A2

    公开(公告)日:2018-03-21

    申请号:EP17190727.2

    申请日:2017-09-12

    申请人: Honeywell Limited

    IPC分类号: G05B17/02

    摘要: A method includes obtaining (402) operating data associated with operation of a cross-directional industrial process controlled by at least one model-based process controller (106, 204). The method also includes, during a training period (502a, 502b), performing (406) closed-loop model identification with a first portion of the operating data to identify multiple sets of first spatial and temporal models. The method further includes identifying (408) clusters (604) associated with parameter values of the first spatial and temporal models. The method also includes, during a testing period (504a, 504b), performing (410) closed-loop model identification with a second portion of the operating data to identify second spatial and temporal models. The method further includes determining (412) whether at least one parameter value of at least one of the second spatial and temporal models falls outside at least one of the clusters. In addition, the method includes, in response to such a determination (414), detecting that a mismatch exists between actual and modeled behaviors of the industrial process.

    摘要翻译: 一种方法包括获得(402)与由至少一个基于模型的过程控制器(106,204)控制的横向工业过程的操作相关联的操作数据。 该方法还包括,在训练时段(502a,502b)期间,利用操作数据的第一部分执行(406)闭环模型识别以识别多组第一空间和时间模型。 该方法进一步包括识别(408)与第一空间模型和时间模型的参数值相关联的群集(604)。 该方法还包括在测试时段(504a,504b)期间,利用操作数据的第二部分执行(410)闭环模型识别以识别第二空间和时间模型。 该方法还包括确定(412)第二空间和时间模型中的至少一个的至少一个参数值是否落在至少一个簇之外。 此外,该方法包括响应于这样的确定(414),检测工业过程的实际行为和建模行为之间存在不匹配。

    CLOSED-LOOP MODEL PARAMETER IDENTIFICATION TECHNIQUES FOR INDUSTRIAL MODEL-BASED PROCESS CONTROLLERS
    2.
    发明公开
    CLOSED-LOOP MODEL PARAMETER IDENTIFICATION TECHNIQUES FOR INDUSTRIAL MODEL-BASED PROCESS CONTROLLERS 审中-公开
    基于工业模型的过程控制器的闭环模型参数识别技术

    公开(公告)号:EP3296821A2

    公开(公告)日:2018-03-21

    申请号:EP17190493.1

    申请日:2017-09-11

    申请人: Honeywell Limited

    IPC分类号: G05B17/02

    摘要: A method includes obtaining (402) closed-loop data associated with operation of an industrial process controller (106, 204), where the industrial process controller is configured to control at least part of an industrial process using at least one model (144, 230). The method also includes generating (404) at least one noise model associated with the industrial process controller using at least some of the closed-loop data. The method further includes filtering (406) the closed-loop data based on the at least one noise model. In addition, the method includes generating (408) one or more model parameters for the industrial process controller using the filtered closed-loop data.

    摘要翻译: 一种方法包括获得(402)与工业过程控制器(106,204)的操作相关联的闭环数据,其中工业过程控制器被配置为使用至少一个模型(144,230)来控制工业过程的至少一部分 )。 该方法还包括使用至少一些闭环数据生成(404)与工业过程控制器相关联的至少一个噪声模型。 该方法还包括基于至少一个噪声模型对闭环数据进行滤波(406)。 另外,该方法包括使用经滤波的闭环数据生成(408)用于工业过程控制器的一个或多个模型参数。

    MODEL-PLANT MISMATCH DETECTION USING MODEL PARAMETER DATA CLUSTERING FOR PAPER MACHINES OR OTHER SYSTEMS
    5.
    发明公开
    MODEL-PLANT MISMATCH DETECTION USING MODEL PARAMETER DATA CLUSTERING FOR PAPER MACHINES OR OTHER SYSTEMS 审中-公开
    使用模型参数数据聚类的造纸机或其他系统的模型 - 植物不匹配检测

    公开(公告)号:EP3296822A2

    公开(公告)日:2018-03-21

    申请号:EP17190494.9

    申请日:2017-09-11

    申请人: Honeywell Limited

    IPC分类号: G05B17/02

    摘要: A method includes repeatedly identifying (404) one or more values for one or more model parameters of at least one model (144, 230) associated with a process. The one or more values for the one or more model parameters are identified using data associated with the process. The method also includes clustering (406) the values of the one or more model parameters into one or more clusters (604). The method further includes identifying (408) one or more additional values for the one or more model parameters using additional data associated with the process. In addition, the method includes detecting (410) a mismatch between the at least one model and the process in response to determining that at least some of the one or more additional values fall outside of the one or more clusters. The values could be clustered using a support vector machine.

    摘要翻译: 一种方法包括重复识别(404)与过程相关联的至少一个模型(144,230)的一个或多个模型参数的一个或多个值。 使用与过程相关的数据来识别一个或多个模型参数的一个或多个值。 该方法还包括将一个或多个模型参数的值聚类(406)为一个或多个聚类(604)。 该方法还包括使用与该过程相关联的附加数据来识别(408)该一个或多个模型参数的一个或多个附加值。 此外,所述方法包括响应于确定所述一个或多个附加值中的至少一些落在所述一个或多个集群之外而检测(410)所述至少一个模型与所述过程之间的失配。 这些值可以使用支持向量机进行聚类。