Abstract:
The disclosure is directed to a method and system for generating a pilot tone for an optical signal with an optical telecommunications system. The pilot tone is generated in the digital domain by modulating the data to be transmitted to a destination node within the optical telecommunications network. The modulation of the data introduces occurrence modulation to the optical signal.
Abstract:
Optical network devices and method for optical network communications in discrete multi-tone (DMT) are provided. A serial information signal is converted to groups of bits and loaded to parallel processing branches based on bit rates of the parallel processing branches. Each branch is configured to encode the associated group of data bits on the associated tone. A first bit rate and modulation and power allocation to a first branch of the branches may be different from a second bit rate and modulation and power allocation to a second branch of the branches. To recover the incoming data, the encoded signal may be parallel-processed using branches with different demodulation formats and provide the serial data stream.
Abstract:
An apparatus comprises a digital signal processing module configured to receive a data stream and generate a plurality of digital multiple tones, a plurality of digital-to-analog converters coupled to the digital signal processing module, a plurality of drivers coupled to respective digital-to-analog converters, an electro-optic modulator having inputs coupled to the drivers and outputs coupled to a fiber and a multi-wavelength light source coupled to the electro-optic modulator.
Abstract:
System and method embodiments are provided for bit loading for optical Discrete Multi-Tone Transmission (DMT). In an embodiment, a method for bit loading for optical DMT transmission or reception includes receiving, at a processor, a bit data stream, wherein the bit data stream comprises a plurality of subcarriers; assigning, with the processor, a code rate to each of a plurality of forward error correction (FEC) encoders/decoders according to a mapping of a signal-to-noise-ratio (SNR) to a code rate for each of the subcarriers or subcarrier groups, wherein each FEC encoder/decoder corresponds to a respective one of the subcarriers or a respective subcarrier group; and assigning, with the processor, a modulation format to each subcarrier or each subcarrier group according to a mapping of an SNR for each subcarrier or subcarrier group to a bit number for a corresponding subcarrier or subcarrier group.
Abstract:
A clock synchronization apparatus, an optical transmitter, an optical receiver, and a clock synchronization method are provided, to implement flexible application to application scenarios with different transmission bandwidths. In the clock synchronization apparatus, a digital interpolator adjusts a sampling clock frequency of a digital signal under sampling clock control of a clock control circuit. Therefore, the clock synchronization apparatus adaptively tracks and adjusts a sampling clock frequency without relying on a sampling frequency of a peripheral clock circuit, to ensure clock synchronization, thereby supporting flexible application to application scenarios with different bandwidth requirements.
Abstract:
A method for recovering a quadrature amplitude modulated (QAM) signal is disclosed. The method includes receiving a QAM signal at a demultiplexers, where the QAM signal comprises multiple modulation schemes, splitting the QAM signal into k branches, where k is the number of QAM modulation schemes of the signal, passing the branch having the lowest order QAM modulation scheme to a first equalizer for recovering and tracking polarization and compensating polarization mode dispersion (PMD), updating a tap updating algorithm with a recovery value determined by the first equalizer, and recovering and tracking polarization and compensating PMD for all other branches based on the recovery value.