摘要:
A method and a device for transmitting an Optical Channel Transport Unit signal are disclosed in the present invention. The method includes: receiving an Optical Channel Transport Unit OTUk signal after photoelectric conversion; wrapping the OTUk signal into an Optical Channel Data Unit (ODU) signal; multiplexing and mapping the ODU signal to an Optical Channel Payload Unit OPUj signal, where the OPUj signal is a High Order signal of the ODU signal; and wrapping the OPUj signal into an ODUj signal and an OTUj signal, and sending the ODUj signal and the OTUj signal. Through the embodiments of the present invention, fully transparent transmission of an OTU signal can be implemented.
摘要:
A method, a device and a system for interconnecting a multi-protocol label switching (MPLS) network and an Ethernet are provided. A packet sent by a node located at the Ethernet is received, the packet is parsed, the parsed packet is re-encapsulated by means of MPLS, and the re-encapsulated packet is sent to a node located at the MPLS network, so as to implement interconnection between the MPLS network and the Ethernet. A reverse solution is similar to this. An intermediate node in the solution adopts a manner of parsing a packet and then re-encapsulating the packet when the packet is sent from one network to another network, instead of transparent transmission only. Therefore, it is unnecessary to configure a Media Access Control (MAC) address of a remote node on a node located at the Ethernet and to configure Ethernet information on a node located at the MPLS network.
摘要:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. The method for transmitting a client signal includes, at the transmitting end, mapping a client signal to be transmitted to a corresponding low-order Optical Channel Data Unit (ODU) in a low-order ODU set, wherein low-order ODUs in the low-order ODU set having rates increased in order, and having rate correspondence relations with the client signals; mapping the low-order ODU to a timeslot of a high-order Optical Channel Payload Unit (OPU) in a high-order OPU set; and adding overheads to the high-order OPU to form an Optical Channel Transport Unit (OTU), and transferring the OTU to an Optical Transport Network (OTN) for transmission.