摘要:
The present invention refers to a process for the preparation of an additive with a metallic hydroxide base, and especially of magnesium hydroxide, to be integrated in coatings with the purpose to give them higher flame retarding properties. The hydroxide has an average particle size that is selected from between 1 nanometer and 10 microns preferable with a wide variety, the magnesium hydroxide is submitted to a treatment of washing and diffusion, mainly so that they efficiently are dispersed in, and do not interfere with, the desired properties of the coating. The nature of the coating function is selected from the materials and the conditions of the treatment, as well as the size of the particle. The objective coating can have a base of water, solvents, oil, and alcohol. Compared with coatings formed with other flame retarding compositions, the additive of the invention presents less loss of weight by means of burning through ASTM D1360 standards.
摘要:
The additive of the present invention is intended for transferring, to a final coating, biocidal, UV protection, and flame retardant properties and in general the selected properties intrinsic to the metals and compounds of Ag, Au, Cu, Mg, Zn, Bi, Sb, said additive includes the use of solvents, surfactants, dispersants and resins that make it compatible with the final coating. Said coating treated with additive ensures perfect distribution and dispersion of the nanoparticles throughout it, without the need to be subjected to an inorganic substrate. The process for manufacturing the additive starts from existing nanoparticles of the aforementioned metals and compounds, which can be in aqueous organic media or alternatively as dry powders, being submitted to a treatment that allows them to be incorporated in coatings used in a wide variety of environmental conditions. The process can be used for obtaining a variety of functionalized additives.