摘要:
A congestion control system for packet communications networks in which access to the network is controlled to prevent such congestion. Packets within the pre-specified statistical description of each packet source are marked as high priority ("green" packets) while packets exceeding the pre-specified characteristics are marked with a lower priority ("red" packets). The overall red packet rate is limited to prevent red packet saturation of the network. The introduction of red packets into the network is subjected to a degree of hysteresis to provide better interaction with higher layer error recovery protocols. The amount of hysteresis introduced into the red packet marking can be fixed or varied, depending on the statistics of the incoming data packets at the entry point to the network.
摘要:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectionnal communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radio LAN using frequency hopping signaling. The method allows to reuse a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
摘要:
In a packet communications network, the addition or deletion of a connection to the network by a user is governed by a link traffic metric which represents the effective capacity of each link in the network which participates in the packet connection route. The link metric is calculated in real-time and updated by simple vector addition or subtraction. Moreover, this link metric is also used to calculate leaky bucket parameters which govern the access of packets to the network once the connection is set up. A packet network using these link metrics and metric generation techniques provides maximum packet throughput while, at the same time, preserving grade of service guarantees.
摘要:
In a communications system comprising a number of base stations, each base station communicating over a shared communication channel with a plurality of registered stations and controlling the network cell formed by said plurality of registered stations, a method is described for dynamically registering and deregistering mobile stations. Each station owns a unique address and is allocated a local identifier at registration time. Each network cell owns a unique cell identifier known to all registered stations belonging to this network cell. Base stations manage cell members data uniquely associating the unique address and the local identifier corresponding to each one of the mobile stations belonging to their network cell. A registration request is sent to a selected base station by a registering mobile station, comprising the unique cell identifier of the network cell controlled by the selected base station and the unique address of the registering mobile station; the selected base station detects in its cell members data any conflicting registered station whose unique address matches the unique address of the registering mobile station and sends an address check packet to any conflicting registered station, comprising the unique address of the conflicting registered station, its local identifier and the identifier of the network cell it controls. A receiving registered mobile station sends to the selected base station, an acknowledgement to the address check packet if its unique address, the local identifier of its owning base station and its network cell identifier all match with the ones carried by the address check packet. The selected base station rejects the registration request it it receives an acknowledgement to its address check packet. The same address check packet is used to deregister inactive stations.
摘要:
A Medium Access (MAC) Protocol is utilized for wireless radio access for a plurality of remote stations to a base station on a LAN. The MAC protocol is based on a reservation scheme for user data traffic and a random access technique for control and signalling traffic. There is a time division fixed frame structure in which time is slotted, and time slots are grouped into fixed frames consisting of data and control subframes or periods. The fixed frame structure consists of three periods (A, B, and C) along with their respective headers. The first period, the A period, is the outbound channel which is used exclusively for data transfer from the base station to the remote stations. The following period, the B period, is the inbound channel that is used for contention-free data transfer from the remote stations to the base station. The allocation of the data slots in the A and B periods is performed by the base station. The last period of the frame, designated as the C period, is the control channel used for the transmission of reservation requests and data from the remote stations to the base station in a random-access contention mode using a slotted Aloha protocol. The duration of the three periods may be varied using a movable boundary technique. The base station estimates the number of actively transmitting remote stations utilizing feedback information from the remote stations. This estimate is broadcast to the remote stations as control indicia to control their transmission attempts in the C period, thus yielding high transmission efficiency.
摘要:
A packet communications system utilizes a route determining mechanism by identifying principal paths between the source and the destination in the system. Principal paths are minimum hop count paths with a transmission delay less than a specified threshold. Principal path links are accepted as legs of the optimum path, if feasible, i.e., if the resulting load on the link is less than a specified principal threshold. Secondary links are accepted only if the resulting load on the link is less than a specified secondary threshold, where the secondary threshold is less than the principal threshold. All paths must also have a transmission delay less than a specified threshold. Each request for a route includes the source node, the destination node, the load required, the maximum transmission delay and, if desired, the quality of service parameters which all of the legs of the route must satisfy. A modified Bellman-Ford breadth-first search algorithm is used to identify the principal links and, using these principal link identifications, determining the optimum path.