摘要:
A technique for simultaneously transmitting wide and narrow optical beacon signals includes generating a laser beam and splitting the laser beam into a first signal on a first path and a second signal on a second path via a wavelength-dependent beamsplitter. A wide beacon signal having a first beam divergence is generated from the first signal, and a narrow beacon signal having a second, lesser beam divergence is generated from the second signal. The wavelength of the laser beam determines an allocation of the laser energy between the wide and narrow beacon signals based on transmittance/reflectance characteristic of the beamsplitter at that wavelength. The wide and narrow beacon signals are simultaneously transmitted in a overlaid manner into free space to support acquisition and tracking in a free-space optical communication system. The beamsplitter can simultaneously transmit or reflect substantially all of a data signal at a different wavelength.
摘要:
A technique for generating a data signal and a beacon signal for free space optical communications involves generating a data signal having a first optical wavelength and a beacon signal having a second optical wavelength. The data signal is encoded with data via modulation at a first modulation rate. The beacon signal is an inverted version of the data signal and can be further modulated at a second modulation rate that is less than the first modulation rate. The data and beacon signals are optically combined to produce a combined signal in which power attributable to the beacon signal is interleaved with and substantially non-overlapping temporally with power attributable to the data signal. The combined signal is amplified via a fiber amplifier, and the combined signal is supplied to transmitter optics for transmitting the data signal and the beacon signal into free space.
摘要:
A technique for generating complementary signals for joint transmission involves generating a first signal having a first wavelength and a second signal having a second wavelength. The first signal is modulated with a first modulation to encode data, and the second signal is modulated with a second modulation, which is an inverted version of the first modulation, to encode the same data such that the first and second signals are complementary. The first and second signals are combined to produce a combined signal in which power attributable to the first signal is interleaved with and substantially non-overlapping temporally with power attributable to the second signal. The combined signal is amplified and then transmitted. The first and second signals can be optical signals at respective first and second optical wavelengths, where the first and second signals are on-off keying (OOK) modulated.