摘要:
A modular canal hearing aid assembly having a main module positioned in the ear canal and a disposable battery module laterally positioned in the ear canal. The main module incorporates the durable components of a hearing device including the receiver, microphone and electronics. The disposable battery module comprises consumable elements including battery and incoming sound port. The disposable battery module provides a unitary structure that is easier to handle, remove from the main module, and replace when any of the consumable elements is depleted or degraded. The canal hearing device assembly is generic in shape and provided with assorted seal tips for "instant fitting" without resorting to custom manufacturing.
摘要:
Disclosed herein are systems and methods enabling hearing aid fitting by a non-expert consumer. The method in one embodiment involves delivering a sequence of test audio signals corresponding to natural sound segments to a non-acoustic input of a programmable hearing device in-situ, while allowing the consumer to adjust fitting parameters based perceptual assessment of hearing device output. The sound segments define a fitting soundscape within the normal human auditory range, with each sound segment corresponding to one or more fitting parameters of the programmable hearing device. The consumer is instructed to listen to the output of the in-situ hearing device and adjust controls related to corresponding fitting parameters. In one embodiment, the fitting system comprises a personal computer and a handheld device providing calibrated test audio signals and programming interface. The systems and methods allow home dispensing of hearing devices without requiring specialized instruments.
摘要:
Disclosed herein are systems and methods enabling self-fitting by a non-expert consumer. The method in some examples involves transmitting a wireless command by a computing device to a hearing device in-situ to produce a sequence of test audio signals corresponding to natural sound segments, while allowing the consumer to adjust fitting parameters based on perceptual assessment of hearing device output. The sound segments may represent a practical range of sounds within the normal human auditory range, with each sound segment selected to correspond to one or more fitting parameters of the programmable hearing device. The consumer is instructed to listen to the output of the in-situ hearing device and adjust controls on the personal computer's graphical user interface related to corresponding fitting parameters. The systems and methods disclosed herein allow dispensing or adjusting of hearing devices without requiring specialized instruments or clinical settings.
摘要:
Examples of systems and methods for profiling the hearing ability of a consumer are disclosed. One example includes a personal computer and a handheld device configured to produce calibrated acoustic output at suprathreshold levels above 20 db HL, and at step levels of 10-20 decibels, and presented test frequency bands across an audiometric frequency range from 400 to 8000Hz. The consumer's minimal audibility levels are registered, and a hearing profile score is presented to indicate hearing ability and hearing aid candidacy. In some embodiments, band-limited natural sounds are presented. Systems and methods disclosed herein, with considerations for noise present in the consumer's environment, allow for rapid calibrated hearing profiling, using a standard personal computer and minimal hardware, thus particularly suited for self-testing outside clinical environments such as at home or the office.
摘要:
The present disclosure describes examples of systems and methods of wireless remote control of appliances using a canal hearing device upon manual activation of a switch placed in the concha cavity behind the tragus. In some examples, the lateral end comprises one or more manually activated switches, a wireless antenna, and a battery cell. In some examples, the wireless electronics include low energy Bluetooth capability. The appliance may be any device with wireless control capability, for example an electronic lock, a thermostat, an electronic lighting, a telephone, a kitchen appliance, a medical alert system, a television, a medical device, and a smart glass. The inconspicuous and secure wear of the canal hearing device may allow a hearing device user to enjoy a normal lifestyle, including exercise, and to discretely interact with wirelessly controlled devices.