PROCEDE DE GENERATION DE NOMBRES PREMIERS PROUVES ADAPTE AUX CARTES A PUCE
    2.
    发明公开
    PROCEDE DE GENERATION DE NOMBRES PREMIERS PROUVES ADAPTE AUX CARTES A PUCE 审中-公开
    用于生产证实的化合物用于智能卡的适当的原号码

    公开(公告)号:EP2791783A1

    公开(公告)日:2014-10-22

    申请号:EP12815733.6

    申请日:2012-12-12

    申请人: Inside Secure

    IPC分类号: G06F7/72

    摘要: The invention relates to a prime number generation method implemented in an electronic device (DV). The method includes steps of generating a prime number from another prime number via the formula Pr = 2P × R + 1, wherein P is a prime number having a bit number less than that of the potential prime number and R is an integer, and using the Pocklington primality test on the candidate prime number. The candidate prime number is proven to be prime when passing the Pocklington test. According to the invention, the size in number of bits of the candidate prime number is equal to three times the size of the prime number (P) to a nearest whole unit, the generated candidate prime number being kept as a candidate prime number only if the quotient (U) from the integer division of the integer (R) by the prime number is odd.

    摘要翻译: 本发明涉及一种用于生成素数,在电子设备中实现在,该方法包括使用式PR = 2P从另一个素数生成素数的步骤·R + 1,其中P是具有一个质数 测试数比候补的素数的较低位的,和R是整数,以及将所述Pocklington的素性测试到候选素数,若其经过Pocklington的被证明的素数候补。 。根据本发明,在候选素数的比特数的大小等于所述素数的大小的3倍,以一个单元内,产生的候选素数被保留为候选素数仅当的商 由素数的整数的整数除法是奇数。

    PROCEDE DE GENERATION DE NOMBRES PREMIERS PROUVES ADAPTE AUX CARTES A PUCE
    3.
    发明公开
    PROCEDE DE GENERATION DE NOMBRES PREMIERS PROUVES ADAPTE AUX CARTES A PUCE 审中-公开
    用于生产证实的化合物用于智能卡的适当的原号码

    公开(公告)号:EP2791784A1

    公开(公告)日:2014-10-22

    申请号:EP12815734.4

    申请日:2012-12-12

    申请人: Inside Secure

    IPC分类号: G06F7/72

    摘要: The invention relates to a method for generating prime numbers, which is implemented in an electronic device (DV), wherein the method includes steps of: calculating a candidate prime number (Pr), having a number of bits (L), using the formula Pr = 2P × R + 1, wherein P is a prime number, and R is an integer; using the Pocklington primality test on the candidate prime number; rejecting the candidate prime number if it fails the Pocklington test; and generating the integer (R) from a multiplicative inverse (X), belonging to a set of multiplicative inverse elements modulo, the product (Pv) of numbers (Qj) belonging to a group of small prime numbers greater than 2, so that the candidate prime number (Pr) is not divisible by any of the numbers from the group. The prime number P has a number of bits equal to a bit near one-half or one-third the number of bits of the candidate prime number.