摘要:
Provided are an ultra-clean rare earth steel and an occluded foreign substance modification control method, the steel includes 10-200 ppm of rare earth elements, 50% or more occluded foreign substances in the steel are dispersed into RE-oxygen-sulfide with the average equivalent diameter Dmean ranging from 1-5µm in a spherical shape or a substantially spherical shape or a granular shape; according to the method, at least 80%, preferably at least 90%, of Al 2 O 3 occluded foreign substances in the steel are modified into RE-oxygen-sulfide, compared with steel with the same components without rare earth, the total amount of the occluded foreign substances in the steel is reduced by 18% or higher, the cracking probability caused by occluded foreign substances such as Al 2 O 3 in traditional pure steel is reduced, the mechanical performance such as the fatigue life of the steel is remarkably improved, precise control over the modification type, distribution and dimension of the occluded foreign substances in the steel is achieved, the method is suitable for researching and producing of high-performance steel in more varieties.
摘要:
Provided in the present application are a rare-earth microalloyed steel and a control process. The steel has a special microstructure, and the microstructure comprises a rare earth-rich nanocluster having a diameter of 1-50 nm.The nanocluster has the same crystal structure type as a matrix. The rare earth-rich nanocluster inhibits the segregation of the elements S, P and As on a grain boundary, and obviously improves the fatigue life of the steel. In addition, a rare-earth solid solution also directly affects a phase change dynamics process so that the diffusion-type phase change startingtemperature in the steel changes at least to 2°C, and even changes to 40-60 °C in some kinds of steel, thereby greatly improving the mechanical properties thereof, and providing a foundation for the development of more kinds of high-performance steel.
摘要:
The present invention relates to the field of casting blank manufacturing, in particular to a method for enhancing the self-feeding ability of a heavy section casting blank, which can solve the problems of poor centre quality, surface crack and high rejection rate of the heavy section casting blanks in the prior art. By controlling the outer cooling conditions of different solidification stages of the casting blank, the present invention quickly solidifies and crusts the outer surface of the casting blank to increase the strength and prevent surface crack at first, and then performs thermal insulation on the casting blank surface such that large area of the core forms the mushy region such that the solidified layer of the casting blank surface is maintained at a relatively high temperature to facilitate realization of the plastic deformation, thus realizing synchronous solidification and solid movement in the subsequent solidification and shrinkage processes of the casting blank, fulfilling the aim of radial self-feeding of the high-temperature deformable metal, eliminating the inner shrinkage voids and surface crack, and obviously eliminating the inner shrinkage of the casting blank. The present invention is applicable to the heavy section metal castings, in particular to the round and square heavy section casting blanks which have a large height-diameter ratio and cannot eliminate the axis shrinkage pipe through the feeder head.