摘要:
A method for analyzing a metal specimen includes an electrolysis step of electrolyzing a metal specimen containing a reference element and a target element in an electrolytic solution, a sampling step of sampling a portion of the electrolytic solution, an analysis step of analyzing the sampled electrolytic solution, a concentration ratio-calculating step of calculating the concentration ratio of the target element to the reference element in the electrolytic solution on the basis of the analysis results, and a content-calculating step of calculating the content of the target element present in the form of a solid solution by multiplying the content of the reference element in the metal specimen by the obtained concentration ratio.
摘要:
A method for analyzing a metal specimen includes an electrolysis step of electrolyzing a metal specimen containing a reference element and a target element in an electrolytic solution, a sampling step of sampling a portion of the electrolytic solution, an analysis step of analyzing the sampled electrolytic solution, a concentration ratio-calculating step of calculating the concentration ratio of the target element to the reference element in the electrolytic solution on the basis of the analysis results, and a content-calculating step of calculating the content of the target element present in the form of a solid solution by multiplying the content of the reference element in the metal specimen by the obtained concentration ratio.
摘要:
There are provided a method for desulfurizing molten steel, characterized in that a sample taken out from molten steel after the tapping from a converter or during the secondary refining is analyzed rapidly in a high accuracy by a method comprising a high frequency induction heating step wherein the sample is combusted and oxidized under the high frequency induction heating in a pure oxygen atmosphere to convert S in the sample into SO 2 and an analyzing step wherein SO 2 -containing gas produced in the high frequency induction heating step is analyzed through an ultraviolet fluorescence method to quantify S concentration of the sample, whereby S concentration of molten steel after the tapping from the converter can be controlled in a high accuracy to prevent failure of S concentration and also desulfurization time in the secondary refining can be shortened and the amount of the desulfurizer or the like used can be reduced, and a method of manufacturing molten steel by using such a method.
摘要:
A high-strength steel sheet having high stretch flangeability after working and corrosion resistance after painting is provided. The steel sheet contains, on the basis of mass percent, C: 0.02% to 0.20%, Si: 0.3% or less, Mn: 0.5% to 2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.1% or less, Ti: 0.05% to 0.25%, and V: 0.05% to 0.25%, the remainder being Fe and incidental impurities. The steel sheet has a substantially ferritic single phase, the ferritic single phase containing precipitates having a size of less than 20 nm, the precipitates containing 200 to 1750 mass ppm Ti and 150 to 1750 mass ppm V, V dissolved in solid solution being 200 or more but less than 1750 mass ppm.
摘要:
Provided are a high-strength steel sheet having excellent stretch flangeability after working and a method for producing such a high-strength steel sheet. The composition contains, in mass percent, 0.08% to 0.20% of carbon, 0.2% to 1.0% of silicon, 0.5% to 2.5% of manganese, 0.04% or less of phosphorus, 0.005% or less of sulfur, 0.05% or less of aluminum, 0.07% to 0.20% of titanium, and 0.20% to 0.80% of vanadium, the balance being iron and incidental impurities. In addition, the structure includes 80% to 98% by volume of a ferrite phase and a second phase. Furthermore, the sum of the amounts of titanium and vanadium contained in precipitates having a size of less then 20 nm is 0.150% by mass or more. The difference (HV α - HV s ) between the hardness of the ferrite phase (HV α ) and the hardness of a second phase (HV s ) is -300 to 300.
摘要:
A method for analyzing a metallic material includes the steps of electrolyzing a metal sample in an electrolyte; removing the electrolyzed metal sample from the electrolyte; immersing the metal sample removed from the electrolyte into a dispersive solution that is different from the electrolyte to separate at least one selected from the group consisting of a precipitate and an inclusion deposited on the metal sample; and analyzing the at least one selected from the group consisting of a precipitate and an inclusion extracted into.the dispersive solution.