摘要:
The aviation fuel oil base of the present invention is obtained by hydrotreating an oil to be treated containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oils and fat and a sulfur-containing hydrocarbon compound and then hydroisomerizing the resultant hydrotreated oil, wherein a yield of a fraction having a boiling range of 140 to 300°C is 70 mass% or more; an isoparaffin content is 80 mass% or more; a content of isoparaffin having 2 or more branches is 17 mass% or more; an aromatic content is less than 0.1 vol%; an olefin content is less than 0.1 vol%; a sulfur content is less than 1 mass ppm; and an oxygen content is less than 0.1 mass%.
摘要:
The method for manufacturing a hydrocarbon oil of the present invention comprises a first step wherein a plurality of reaction zones filled with a specific catalyst is disposed in series and a feedstock oil containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oil is supplied and hydrotreated under the conditions of a hydrogen pressure of 1 MPa or more and 10 MPa or less in each of the reaction zones; and a second step wherein hydrogen, hydrogen sulfide, carbon dioxide and water are removed from a product to be treated obtained in the first step to obtain a hydrocarbon oil. Among the plurality of reaction zones, the inlet temperature of the reaction zone disposed on the most upstream side is 150°C or more and 250°C or less, the inlet temperature of the second most upstream reaction zone or below is equal to or higher than the condensation temperature of water, and the outlet temperature of the reaction zone disposed on the most downstream side is 260°C or more and 360°C or less. The feedstock oil comprises a recycled oil containing a specific amount of a part of the hydrocarbon oil obtained in the second step and a specific amount of a sulfur-containing hydrocarbon compound.
摘要:
The hydroisomerization catalyst of the present invention is a catalyst used for hydroisomerization of a hydrocarbon, including a support including a calcined zeolite modified with at least one metal selected from the group consisting of Na, K, Cs, Mg, Ca, Ba, and K, and having a thermal history that includes heating at 350°C or more, and at least one inorganic oxide selected from the group consisting of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and a composite oxide containing a combination of at least two or more of these oxides; and at least one metal supported on the support and selected from the group consisting of elements belonging to Groups 8 to 10 of the periodic table, molybdenum and tungsten; wherein the zeolite is prepared from an ion-exchanged zeolite obtained by ion exchange of an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional porous structure in a solution containing ammonium ions and/or protons; and initial heating of the heating at 350°C or more of the thermal history experienced by the zeolite is conducted within the range of 350 to 450°C.
摘要:
Provided is a process for fluid catalytic cracking of a heavy oil by contacting the oil with a catalyst at an elevated temperature for a short period of time to produce light olefins such as propylene and butene. The process comprises contacting the heavy oil with a catalyst comprising as a constituent thereof a fluid catalytic cracking catalyst with a weight ratio (Wmat/Wusy) of an active matrix weight (Wmat) to an ultrastable Y type zeolite weight (Wusy) of 0 to 0.3, under conditions where the reaction zone outlet temperature is from 580 to 630°C, the catalyst/oil ratio is from 15 to 40 weight/weight and the residence time of hydrocarbon in the reaction zone is from 0.1 to 1.0 second.
摘要:
The hydroisomerization catalyst of the present invention is a catalyst used for hydroisomerization of a hydrocarbon, including a support including a calcined zeolite modified with at least one metal selected from the group consisting of Na, K, Cs, Mg, Ca, Ba, and K, and having a thermal history that includes heating at 350°C or more, and at least one inorganic oxide selected from the group consisting of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and a composite oxide containing a combination of at least two or more of these oxides; and at least one metal supported on the support and selected from the group consisting of elements belonging to Groups 8 to 10 of the periodic table, molybdenum and tungsten; wherein the zeolite is prepared from an ion-exchanged zeolite obtained by ion exchange of an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional porous structure in a solution containing ammonium ions and/or protons; and initial heating of the heating at 350°C or more of the thermal history experienced by the zeolite is conducted within the range of 350 to 450°C.
摘要:
A method for manufacturing a hydrocarbon oil, comprising: a first step wherein a feedstock oil containing an oxygen-containing organic compound and a water-insoluble chlorine-containing compound is brought into contact with a hydrogenation catalyst comprising a support containing a porous inorganic oxide and one or more metals selected from Group VIA and Group VIII of the periodic table supported on the support in the presence of hydrogen to generate a hydrocarbon oil and water in a vapor state by the hydrodeoxygenation of an oxygen-containing organic compound and convert the water-insoluble chlorine-containing compound into a water-soluble chlorine-containing compound; a second step wherein the water in the reaction product of the first step is maintained in a vapor state and the reaction product of the first step is brought into contact with a nitrogen-containing Brønsted base compound which has a boiling point at normal pressure of 100°C or less and is water-soluble to obtain a product to be treated; and a third step wherein the product to be treated is cooled to a temperature not higher than the temperature at which water in a vapor state is liquefied to form an aqueous phase containing a water-soluble chlorine-containing compound and a nitrogen-containing Bronsted base compound and then separate the aqueous phase from an oil to be treated to obtain a product oil containing a hydrocarbon oil.