摘要:
A method for guaranteeing fast reactor core subcriticality under conditions of uncertainty involves, after assembling the reactor core, conducting physical measurements of reactor core subcriticality and comparing the obtained characteristics with design values; then, if there is a discrepancy between the values of the obtained characteristics and the design values, installing adjustable reactivity rods in the reactor at the level of a fuel portion of the reactor core, wherein the level of boron-B10 isotope enrichment of the adjustable reactivity rods is selected to be higher than the level of boron-B10 isotope enrichment of compensating rods of the reactor core. The technical result consists in improving the operating conditions of absorbing elements of a compensating group of rods, eliminating the need for increasing the movement thereof, simplifying monitoring technologies used during production, and simplifying the algorithm for safe reactor control.
摘要:
A method for guaranteeing fast reactor core subcriticality under conditions of uncertainty involves, after assembling the reactor core, conducting physical measurements of reactor core subcriticality and comparing the obtained characteristics with design values; then, if there is a discrepancy between the values of the obtained characteristics and the design values, installing adjustable reactivity rods in the reactor at the level of a fuel portion of the reactor core, wherein the level of boron-B10 isotope enrichment of the adjustable reactivity rods is selected to be higher than the level of boron-B10 isotope enrichment of compensating rods of the reactor core. The technical result consists in improving the operating conditions of absorbing elements of a compensating group of rods, eliminating the need for increasing the movement thereof, simplifying monitoring technologies used during production, and simplifying the algorithm for safe reactor control.