摘要:
End-mill machining control method and apparatus in which cutting forces tangential and normal to tool motion are detected and machining is controlled based on the detected cutting force values. A primary component Ft and motion axis components Fx, Fy of a cutting force are determined from current values of a spindle motor and motion axis motors for tool feed. A cutting-engaged angle αen is determined from a radius R of a tool and a depth of cut I into a workpiece. A motion direction angle β is determined from distribution motion amounts ΔX, ΔY to the axes. The cutting forces Fm, Fs tangential and normal to tool motion are determined from the primary component Ft and a motion axis component Fx or Fy whichever is the largest, the cutting-engaged angle αen, the motion direction angle β. The accuracy of the determined cutting forces Fm, Fs is high since they are determined from the primary component Ft less affected by disturbance and the largest axis component of the cutting force. By controlling the cutting forces Fm, Fs tangential and normal to the tool motion, machining accuracy can be improved and tool life can be extended.
摘要:
End-mill machining control method and apparatus in which cutting forces tangential and normal to tool motion are detected and machining is controlled based on the detected cutting force values. A primary component Ft and motion axis components Fx, Fy of a cutting force are determined from current values of a spindle motor and motion axis motors for tool feed. A cutting-engaged angle αen is determined from a radius R of a tool and a depth of cut I into a workpiece. A motion direction angle β is determined from distribution motion amounts ΔX, ΔY to the axes. The cutting forces Fm, Fs tangential and normal to tool motion are determined from the primary component Ft and a motion axis component Fx or Fy whichever is the largest, the cutting-engaged angle αen, the motion direction angle β. The accuracy of the determined cutting forces Fm, Fs is high since they are determined from the primary component Ft less affected by disturbance and the largest axis component of the cutting force. By controlling the cutting forces Fm, Fs tangential and normal to the tool motion, machining accuracy can be improved and tool life can be extended.
摘要:
A numeric array of move command data Qi constituting a reference cam diagram F(θ) is stored in advance in a data table of a CMOS memory 4. Alternatively, a shift position of a cam corresponding to a rotational angle θ of the cam is stored in advance so that move command data can be generated by obtaining the shift position of the cam from the rotational angle of the cam based on the rotational angle value. In response to the input of a shift Ka in the lift direction, shift Kb in the pitch-circle direction, maximum lift Kc, and data number n as a criterion for extension or compression in the pitch-circle direction, the move command data can be corrected by automatic processing by means of a motion controller. Thus, final move command data Pk can be generated and outputted as position commands.
摘要:
A numeric array of move command data Qi constituting a reference cam diagram F(θ) is stored in advance in a data table of a CMOS memory 4. Alternatively, a shift position of a cam corresponding to a rotational angle θ of the cam is stored in advance so that move command data can be generated by obtaining the shift position of the cam from the rotational angle of the cam based on the rotational angle value. In response to the input of a shift Ka in the lift direction, shift Kb in the pitch-circle direction, maximum lift Kc, and data number n as a criterion for extension or compression in the pitch-circle direction, the move command data can be corrected by automatic processing by means of a motion controller. Thus, final move command data Pk can be generated and outputted as position commands.