摘要:
The invention relates to a magnetic resonance imaging apparatus comprising an array of two or more RF antennas(9) for transmitting RF pulses to and receiving MR signals from a body(7) of a patient positioned in an examination volume (2), the RF antennas (9) having spatial transmit and receive sensitivity profiles. The apparatus is arranged to: -control the temporal succession, the phase, and the amplitude of the RF feeding of each individual RF antenna (9), the phases and amplitudes being determined from the spatial transmit sensitivity profiles of the RF antennas(9), and -reconstruct a MR image from a combination of the received MR signals received via the individual RF antennas(9) and from the spatial receive sensitivity profiles of the RF antennas(9). The invention proposes that the apparatus is further arranged to: -determine the spatial transmit sensitivity profiles of the RF antennas (9) from the spatial receive sensitivity profiles of the RF antennas (9), or -determine the spatial receive sensitivity profiles of the RF antennas (9) from the spatial transmit sensitivity profiles of the RF antennas (9).
摘要:
A novel magnetic resonance imaging method and apparatus is described wherein an image is derived from sub-sampled magnetic resonance signals and on the basis of the spatial sensitivity profile of each receiving antenna. A sequence of RF-pulses and gradients is applied, which sequence corresponds to a set of trajectories containing at least one substantially non-linear trajectory in k-space, wherein the density of said trajectory set being substantially lower than the density corresponding to the object size. Each signal along said trajectory set is sampled at least at two different receiver antenna positions. The image is reconstructed by converting the data of said signals to a Cartesian grid by convolution with a gridding kernel, whereby the gridding kernel is specific for each antenna, differs between one region and another in k-space, and is a Fourier-transform of a pattern weighted for each antenna with respect to the Cartesian grid.
摘要:
The invention relates to a device (1) for magnetic resonance imaging of a body (7) placed in a stationary and substantially homogeneous main magnetic field. In order to provide an MR device (1) which is arranged to automatically select an optimum subsampling scheme for three-dimensional SENSE, the invention proposes to select the subsampling scheme such that the maximum number of folded-over image values is minimized and simultaneously distances between the positions of the folded-over image values within the predetermined field of view are maximized.
摘要:
A novel magnetic resonance imaging method is presented for forming an image of an object from a plurality of signals acquired by an array of receiver antennae, whereas prior to imaging a sensitivity map of each of the receiver antennae is provided, at least two adjacent antennae record signals originating from the same imaging position and the image intensity is calculated from the signals measured by different antennae, wherein the number of phase encoding steps is reduced with respect to the full set thereof. Further the homogeneity of the main magnetic field is defined in a first region of full homogeneity, a second region of moderate homogeneity and a third region of full inhomogeneity, the sensitivity data of the array of receiver antennae is measured by a coarse calibration scan, whereas the full measured sensitivity data is used in the first region, for each point in the second region an estimate of the coil sensitivities is derived by a weighted addition of the measured sensitivities in the neighborhood of that point, and in the third region the sensitivity data is set zero.
摘要:
A magnetic resonance imaging method for forming an image of an object from a plurality of signals acquired by an array of multiple receiver antennae.A navigator gradient is applied for the measurement of navigator MR signals and an additional gradient is applied in order to achieve diffusion sensitivity of the MR signal, wherein phase corrections are determined from phases and moduli of the navigator MR signals so as to correct the measured MR signals. An image of the part of the object is determined from the corrected MR signals. The corrected phase is determined from the weighted phase difference between a reference navigator signal for each antenna and the actual navigator MR signal of said antenna . A common correction rector is used for correction of data from all receiver antennae of the array .
摘要:
A magnetic resonance method is described for fast dynamic imaging from a plurality of signals acquired by an array of multiple sensors. The k-space will be segmented into regions of different acquisition. In the region of a first acquisition type a first partial image will be reconstructed by data of normal magnetic resonance imaging with a full set of phase encoding steps or by data of fast dynamic imaging with a number of phase encoding steps being with a low reduction factor with respect to the full set thereof and in the region of a second acquisition type a second partial image will be reconstructed by data of fast dynamic imaging with a full reduction factor. Thereafter the first and the second partial images will be formed to the full image of the scanned object.
摘要:
The invention relates to a method and a device for the imaging of a part of an object which is arranged in a steady magnetic field. The method according to the invention includes a step for filtering the shot noise from the measured MR signals. Filtering is performed by determining in a first step the value of a combination of a value of a parameter of a measuring point of the MR signal to be corrected and values of the parameter of measuring points i a vicinity of the measuring point. If the value of this combination exceeds a predetermined reference, the value zero is assigned to the value to be corrected. The invention is based on the idea that for a substantial part of the k space the corresponding MR signals behave as white noise. The reference is determined from the statistic distribution of the white noise. If the value of the combination exceeds the reference, it is assumed that a measuring point has been affected by shot noise.
摘要:
The invention relates to a method of MR imaging of at least a portion of a body (10) of a patient placed in an examination volume of an MR device (1). The object of the invention is to provide an improved, i.e. faster, parallel imaging technique. The invention proposes to acquire a survey signal data set (21, 22) at a low image resolution, which survey signal data set (21, 22) includes MR signals received in parallel or successively via a volume RF coil (9) and via a set of array RF coils (11, 12, 13). Spatial sensitivity profiles (23) of the array RF coils (11, 12, 13) are determined from the low resolution data. As a next step, a reference scan is performed in which a reference signal data set (25) is acquired at intermediate resolution solely via the array RF coils (11, 12, 13). The spatial sensitivity profiles (27) of the array RF coils (11, 12, 13) are determined from the data acquired at intermediate resolution and from the spatial sensitivity profiles (23) determined before at low resolution. Finally, a diagnostic scan is performed, in which a diagnostic signal data set (29) is acquired in parallel via the array RF coils (11, 12, 13) at high resolution. The diagnostic signal data set (29) may be acquired in a sub-sampled fashion. A diagnostic MR image (30) is then reconstructed from the diagnostic signal data set (29) and from the spatial sensitivity profiles (27) determined at the intermediate resolution, for example by using the SENSE or SMASH algorithm.
摘要:
The invention relates to a method of performing a magnetic resonance imaging (MRI) reference scan of an examination volume comprising a plurality of image points, the method being performed using a set of detector elements (142), the method comprising: - phase sensitive acquisition of a first and a second complex echo signal originating from a first (214; 306; 310) and second (216; 308; 312) echo for each image point, wherein the acquisition is performed by each of the detector elements of the set of detector elements (142), - determining for a detector element of the set of detector elements (142) a phase difference between the first and the second echo signal for each image point, - calculating from the phase difference a local magnetic field inhomogeneity value for each image point, - deriving for each image point a coil sensitivity matrix, wherein the coil sensitivity matrix is derived by calculating complex ratios of the first or the second complex echo signals acquired by the set of elements.