摘要:
Nuclear image data generated by a multimodal imaging device, such as a combined position emission tomography (PET)/magnetic resonance (MR) scanner (12, 14), is attenuation-corrected with a combined patient-specific attenuation correction (AC) map and an AC map template (70) for an MR coil (72) that is present in both the nuclear and MR scanning procedures. A template library (46) contains templates for each of a plurality of MR coils and other accessories. Each template is generated on one of two manners. The coil may be imaged inside the PET scanner 14 with the transmission source 16 (e.g., Ge-68 or Cs-137). A transmission image 48 is reconstructed using the known algorithms and may be used as the AC template directly. Alternatively, the template can be generated by creating a global histogram of the transmission image and identifying segments of the coil or other accessory. An average linear attenuation coefficient (LAC) value is determined from the distribution of the histogram. The coil or other accessory is imaged using a high resolution CT scan, and the CT image is segmented and assigned the computed LAC values determined from the distribution of the histogram to create the AC map template for the coil.
摘要:
A method and system for use in positron emission tomography, wherein a first processor element (234) is configured to reconstruct a plurality of positron annihilation events detected during a positron emission tomography scan using a list-based reconstruction technique to generate first volumetric data. A second reconstructor (226) is configured to reconstruct the plurality of events using a second reconstruction technique to generate second volumetric data for determining an error correction (228), the error correction applied to the first volumetric data to generate corrected volumetric data for generating a human-readable image (234). In one embodiment a multiplicative error correction is performed on the plurality of events, the first processor element (234) reconstructing the corrected plurality of events; and the second volumetric data error correction comprises an additive error correction.
摘要:
When compensating for truncated patient scan data acquired by a multi-modal PET/CT or PET/MR imaging system (14, 16), such as occurs when a patient is larger than a field of view for an anatomical imaging device, a segmented contour of a non-attenuation-corrected (NAC) PET image is used to identify a contour of the truncated region. An appropriate tissue type is used to fill in truncated regions of a truncated CT or MR image for the attenuation map. The corrected attenuation map is then used to generate an attenuation-corrected PET image of the patient or a region of interest. Alternatively, the system can be employed in PET/CT or PET/MR imaging scenarios where two modalities are performed sequentially (e.g., not simultaneously), and thus the contour derived from the PET scan can be compared to the CT or MR image to infer potential subject motion between the PET and CT or MR scans. Additionally, the system can be employed in PET imaging scenarios where the contour derived from the NAC PET image is used as emission boundary for scatter correction using single-scatter simulation, in which a tail-fitting procedure utilizes an emission boundary to define pure-scatter tails (e.g., in the absence of true coincidence events).
摘要:
A method and apparatus for performing an iterative image reconstruction uses two or more processors (130). The reconstruction task is distributed among the various processors (130). In one embodiment, the projection space data (300) is distributed among the processors (130). In another embodiment, the object space (200) is distributed among the processors (130).
摘要:
A method and apparatus are provided for reconstructing list mode data acquired during a positron emission tomography scan of an object, the data including information indicative of a plurality of detected positron annihilation events. Detected events occurring in a region of interest are identified; the identified events are reconstructed using an iterative reconstruction technique which includes a ray tracing operation to generate volumetric data indicative of the region of interest, wherein the ray tracing operation traces only image matrix elements located in the region of interest; and a human readable image indicative of the volumetric data is generated. In another aspect an image mask and a projection mask are defined correlating to the region of interest; image matrix elements located in the region of interest are determined by applying the image mask; and detected events occurring in a region of interest are identified by applying the projection mask.
摘要:
A method of processing a positron emission tomography (PET) imaging data set (30) acquired of a subject includes independently localizing each positron-electron annihilation event of the PET imaging data set based on time of flight (TOF) localization of the positron-electron annihilation event to form a generated image (34). The generated image may be displayed. The generated image is suitably used as the basis for an initial image of an iterative reconstruction (40) of the PET imaging data set (30) to produce a reconstructed image (42). A spatial contour (56) of an image of the subject in the PET imaging data set (30) is suitably delineated based on the generated image (34). A subject attenuation map (62) for use in PET image reconstruction (40) is suitably constructed based in part on the spatial contour (56).
摘要:
Methods, systems and apparatuses for processing data associated with nuclear medical imaging techniques are provided. Data is ordered in LUT's and memory structures. Articles of manufacture are provided for causing computers to carry out aspects of the invention. Data elements are ordered into a plurality of ordered data groups according to a spatial index order, and fetched and processed in the spatial index order. The data elements include sensitivity matrix elements, PET annihilation event data, and system and image matrix elements, the data grouped in orders corresponding to their processing. In one aspect geometric symmetry of a PET scanner FOV is used in ordering the data and processing. In one aspect a system matrix LUT comprises total number of system matrix elements equal to a total number of image matrix elements divided by a total number of possible third index values.
摘要:
A method and apparatus for performing an iterative image reconstruction uses two or more processors (130). The reconstruction task is distributed among the various processors (130). In one embodiment, the projection space data (300) is distributed among the processors (130). In another embodiment, the object space (200) is distributed among the processors (130).