摘要:
Device and method for synchronously switching activating a first and second charge accumulation section (31, 32) for a duration of a first and second predetermined sub-frame and a first and second X-ray source until lapse of a predetermined time frame for each of the first and second charge accumulation section (31, 32) for the accumulation of a plurality of temporally distributed partial charges according to an origin of a respective one of the plurality of spatially distributed X-ray sources so as to establish a specific relation between the focal spot position and a rule for accumulating the respective partial measurements, e.g. temporally distributed partial charges, belonging to the same focal spot positions, and to keep the focal spot temperature low by only activating the focal spot for a limited time according to a sub-frame.
摘要:
An X-ray detector apparatus comprises an array of detector pixels (20), each pixel (20) comprising a conversion element (26;260) for converting incident radiation into a charge flow, a charge storage element (28) and a switching device (29) enabling the charge stored to be provided to an output of the pixel (20). A plurality of dose sensing pixels further comprise a dose sensing element (40;50). Charge flow from the conversion element (26;260) during X-ray exposure results in a change in the charge stored on the charge storage element (28) and also results in a dose sensing signal being generated which can be read out from the pixel (20). The dose sensing pixels enable a dose signal to be obtained without reading the charges stored on the pixel charge storage elements, so that dose sensing can be carried out during exposure.
摘要:
The present invention relates to an apparatus (10) for generating countable pulses (30) from impinging X-ray photons (12, 14) in an imaging device (16), in particular in a computer tomograph, the apparatus (10) comprising a pre-amplifying element (18) adapted to convert a charge pulse (20) generated by an impinging photon (12, 14) into an electrical signal (22) and a shaping element (26) having a feedback loop (28) and adapted to convert the electrical signal (22) into an electrical pulse (30), wherein a delay circuit (38) is connected to the feedback loop (28) such that a time during which the feedback loop (28) collects charges of the electrical signal (22) is extended in order to improve an amplitude of the electrical pulse (30) at an output (56) of the shaping element (26). The invention also relates to a corresponding imaging device (16) and a corresponding method.
摘要:
According to an exemplary embodiment of the invention a detector unit 301 for detecting electro -magnetic radiation may be provided. The detector unit 301 may comprise a conversion material 332 adapted for converting impinging electro -magnetic radiation into electric charge carriers. Moreover, the detector unit 301 may comprise a charge collection electrode 331 adapted for collecting the converted electric charge carriers and an evaluation circuit 312, 313, 314 adapted for evaluating the electro -magnetic radiation based on the collected electric charge carriers. Moreover, the detector unit 301 may comprise a semiconductor 373 which may be electrically coupled between the charge collection electrode 331 and the evaluation circuit 312, 313, 314.
摘要:
The application describes an X-ray detector, which uses direct X-ray conversion (DiCo) combined with CMOS pixel circuits. DiCo materials have to be used with high voltage to achieve a high field strength. This makes the sensor prone to leakage currents, which falsify the measured charge result. Moreover, most direct conversion materials suffer from large residual signals that lead to temporal artefacts (ghost images) in an X-ray image sequence. A circuit is described, which senses the sensor's dark current including residual signals from previous exposures before the sensor is exposed (again) to X-ray, and freezes relevant circuit parameters at the end of the sensing phase in such way, that the dark current (leakage current and residual signal) can still be drained during exposure. Therefore, the charge pulses generated in the sensor due to X-ray exposure can be integrated without charges carried by the leakage current or residual signal, thus obtaining a more accurate estimate of the deposited X-ray energy.
摘要:
An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
摘要:
The application describes an X-ray detector for use in a medical equipment, wherein the detector comprises an unit for transforming X-ray radiation into electrical charge, a first capacitor for being charged by an electrical charge, wherein the first capacitor is electrically connected to the unit for transforming, a second capacitor for being charged by an electrical charge, and a first gain switching gate, wherein the second capacitor is electrically connected with the unit for transforming if the first gain switching gate is in on-state, wherein the detector is adapted to switch on the first gain switching gate for short periods. Further the application describes an X-ray system comprising a detector according to the invention, wherein the system is adapted for gain selection, wherein the detector is adapted to switch on the first gain switching gate for short periods. Further, the application describes a method for using a detector according to the inventive concept, wherein the first gain switching gate is switched on only for short periods of time for redistribution of electrical charge between the first capacitor and the second capacitor.
摘要:
An x-ray detector and its pixel circuit are described, that allow to cover a large dynamic range with automatic selection of the sensitivity setting in each pixel, thus providing improved signal to noise ratio with all exposure levels. X-ray detectors are required to cover a large dynamic range. The largest exposure determines the required pixel capacitance. However, a large pixel capacitance gives a bad signal to noise ratio with small exposures e.g. in the dark parts of the image. This invention disclosure describes several approaches to provide automatic sensitivity selection in the pixels. This ensures that low signals are stored in a small capacitor or read out with a high sensitivity with corresponding good signal to noise ratio, while larger signals are stored in larger capacitors or are read out with lower sensitivity so that no information is lost.
摘要:
A time-of-flight PET nuclear imaging device (A) includes radiation detectors (20, 22, 24), electronic circuits (26, 28, 30, 32) for processing output signals from each of detectors (20), a coincidence detector (34), a time-of-flight calculator (38) and image processing circuitry (40). A calibration system (48) includes an energy source (50, 150) which generates an electrical or optical calibration pulse. The electrical calibration pulse is applied at an input to the electronics at an output of the detector and the optical calibration pulse is applied to a preselected point adjacent a face of each optical sensor (20) of the detectors. A calibration processor (52) measures the time differences between the generation of the calibration pulse and the receipt of a trigger signal from the electronic circuitry by the coincidence detector (34) and adjusts adjustable delay circuits (44, 46) to minimize these time differences.