Abstract:
Disclosed is a method for fabricating carbon nanotube-metal-polymer nanocomposites, in particular, to a method for fabricating a carbon nanotube-metal-polymer nanocomposite wherein the carbon nanotubes decorated with metal portion in a necklace form are homogeneously dispersed in a polymer base. The method for fabricating a carbon nanotube-metal-polymer nanocomposite comprises: preparing carbon nanotube-metal nanocomposite powder by introducing a polyol reducing agent as well as metal precursor in a carbon nanotube colloidal solution and heating the same; dispersing the carbon nanotube-metal nanocomposite powder in a polymer base; and curing the polymer base to form the carbon nanotube-metal-polymer nanocomposite. According to the present invention, as the carbon nanotubes decorated with metal particles in a necklace form are homogeneously dispersed in the polymer base, microwave absorbing and shielding properties of the final product are improved.
Abstract:
Disclosed is a method for fabricating carbon nanotube-metal-polymer nanocomposites, in particular, to a method for fabricating a carbon nanotube-metal-polymer nanocomposite wherein the carbon nanotubes decorated with metal portion in a necklace form are homogeneously dispersed in a polymer base. The method for fabricating a carbon nanotube-metal-polymer nanocomposite comprises: preparing carbon nanotube-metal nanocomposite powder by introducing a polyol reducing agent as well as metal precursor in a carbon nanotube colloidal solution and heating the same; dispersing the carbon nanotube-metal nanocomposite powder in a polymer base; and curing the polymer base to form the carbon nanotube-metal-polymer nanocomposite. According to the present invention, as the carbon nanotubes decorated with metal particles in a necklace form are homogeneously dispersed in the polymer base, microwave absorbing and shielding properties of the final product are improved.
Abstract:
Disclosed is a method for fabrication of porous carbon fibers. More particularly, the method for fabrication of porous carbon fibers comprises the steps of: processing starch to prepare a gelled starch solution; adding organic acid to the gelled starch solution to prepare a starch solution; dissolving carbon nanotubes in a solvent and adding fiber formable polymer thereto to prepare a carbon nanotube/fiber formable polymer solution; mixing the starch solution with the carbon nanotube/fiber formable polymer solution obtained from the above steps, in order to prepare a carbon nanotube/starch/fiber formable polymer solution; electro-spinning or wet-state spinning the prepared carbon nanotube/starch/fiber formable polymer solution to produce starch composite fibers; oxidation heating the starch composite fibers, then, executing carbonization and vacuum heat treatment of the heated fibers, so as to fabricate the porous carbon fibers. The fabricated porous carbon fiber has high specific surface area and high capacitance, thereby being favorably applicable in manufacturing electrodes for a super capacitor, fuel cell, etc.