摘要:
A method for producing an electrochemically advantageous lithium ion-conductive solid electrolyte with high ionic conductivity, low electronic conduction and electrochemical stability is disclosed. The method comprises the steps of synthesizing lithium sulfide by reacting lithium hydroxide with a gaseous sulfur source at a temperature of not less than 130°C and not more than 445°C, thermally melting plural compounds containing at least silicon sulfide and the synthesized lithium sulfide, and cooling the molten mixture. The silicon sulfide is synthesized by the steps of adding a silicon powder to molten sulfur while stirring to disperse the silicon powder in the molten sulfur and heating the silicon powder-dispersed sulfur in a reaction chamber under reduced pressure.
摘要:
This invention relates to electrochemical devices comprise at least a pair of electrodes and a lithium ion conductive electrolyte provided between the pair of electrodes. At least one of the electrodes comprises a lithium nitride-metal compound having a one-dimensional chain structure. By this, the number of end groups which greatly take part in characteristic degradation of the device can be reduced significantly, ensuring good characteristic properties. The devices include lithium secondary cells, electric double-layer capacitors, and electrochemical display devices.
摘要:
A solid-state electrochemical cell is disclosed that comprises at least one pair of electrodes and a silver-ion conductive solid-electrolyte layer disposed between the electrodes, wherein at least one of the electrodes contains as an electrode active material a compound oxide composed of silver and transition metal oxide. The electrochemical cell is used as a solid-state rechargeable battery, solid-state analogue memory cell, or the like.
摘要:
A method for producing an electrochemically advantageous lithium ion-conductive solid electrolyte with high ionic conductivity, low electronic conduction and electrochemical stability is disclosed. The method comprises the steps of synthesizing lithium sulfide by reacting lithium hydroxide with a gaseous sulfur source at a temperature of not less than 130°C and not more than 445°C, thermally melting plural compounds containing at least silicon sulfide and the synthesized lithium sulfide, and cooling the molten mixture. The silicon sulfide is synthesized by the steps of adding a silicon powder to molten sulfur while stirring to disperse the silicon powder in the molten sulfur and heating the silicon powder-dispersed sulfur in a reaction chamber under reduced pressure.
摘要:
A lithium ion conductive inorganic solid electrolyte is used as an electrolyte in a lithium secondary battery which uses a transition metal chalcogenide or a lithium· transition metal chalcogenide as an active material for negative electrode. There is provided a lithium secondary battery improved in reversibility and in charge and discharge cycle characteristics as compared with lithium secondary batteries which use a liquid electrolyte or a molten salt electrolyte as the electrolyte.