摘要:
Improved operating system architecture for an implantable medical device incorporating adiabatic clock-powered logic alone or in conjunction with conventional clocked logic or self-timed logic for reducing power consumption and increasing and improving processing capabilities is disclosed. The adiabatic clock-powered logic is employed to implement digital signal processors (DSPs) including analog to digital (ADC) signal converters, a state machine or the components of microprocessor cores, e.g., the CPU, arithmetic logic units (ALU), on-chip RAM and ROM and data and control buses, and other logic units, e.g., additional RAM and ROM, a direct memory address (DMA) controller, a block mover/reader, a cyclic redundancy code (CRC) calculator, and certain uplink and downlink telemetry signal processing stages. The adiabatic clocked CMOS logic is incorporated into the same IC or ICs with clocked CMOS logic and provides manufacturing economies.
摘要:
Improved operating system architecture for an implantable medical device incorporating self-timed logic for reducing power consumption and increasing and improving processing capabilities is disclosed. The self-timed logic is employed to implement digital signal processors (DSPs) including analog to digital (ADC) signal converters, a state machine or the components of microprocessor cores, e.g., the CPU, arithmetic logic units (ALU),on-chip RAM and ROM and data and control buses, and other logic units, e.g., additional RAM and ROM, a direct memory address (DMA) controller, a block mover/reader, a cyclic redundancy code (CRC) calculator, and certain uplink and downlink telemetry signal processing stages. The self-timed CMOS logic is incorporated into the same IC or ICs with clocked CMOS logic in a manner that minimizes the size of the clock tree serving the clocked CMOS logic, allows for efficient allocation of chip real estate, and provides manufacturing economies.
摘要:
The operation of an implantable medical device executing at least one set of firmware code is modified using a hardware/firmware trap at a point of execution of the set of firmware code. A patch code for directing the implantable medical device to perform a particular task is provided for execution when the trap generates an interrupt. The operation thereafter returns to the point of execution of the set of firmware code where the interrupt was generated and execution of the set of firmware code continues in a normal manner.
摘要:
The present invention provides methods and systems for regulating delivery of therapeutic proteins and nucleic acids. Specifically, this involves using a genetically engineered electrically responsive promoter operably linked to a therapeutic gene sequence, wherein expression of said sequence is controlled by an electrical pulse generator.
摘要:
In some examples, the disclosure relates to a systems, devices, and techniques for delivering electrical stimulation therapy to a patient. In one example, the disclosure relates to a method including delivering a series of pulses with alternating pulse polarities to a gastrointestinal tract of a patient. The series of pulses includes at least a first pulse of a first polarity, a second pulse of a second polarity, and a third pulse of the first polarity, where the first, second and third pulses are delivered in direct succession and in that order. The first and second pulses are separated by a first time delay and the second and third pulses are separated by a second time delay. In some examples, each of the first and second time delays depend on the frequency that the series of pulses are delivered.
摘要:
Improved operating system architecture for an implantable medical device incorporating self-timed logic for reducing power consumption and increasing and improving processing capabilities is disclosed. The self-timed logic is employed to implement digital signal processors (DSPs) including analog to digital (ADC) signal converters, a state machine or the components of microprocessor cores, e.g., the CPU, arithmetic logic units (ALU),on-chip RAM and ROM and data and control buses, and other logic units, e.g., additional RAM and ROM, a direct memory address (DMA) controller, a block mover/reader, a cyclic redundancy code (CRC) calculator, and certain uplink and downlink telemetry signal processing stages. The self-timed CMOS logic is incorporated into the same IC or ICs with clocked CMOS logic in a manner that minimizes the size of the clock tree serving the clocked CMOS logic, allows for efficient allocation of chip real estate, and provides manufacturing economies.