摘要:
A method of generating a template in an implantable medical device for implantation within a patient, and a processor readable medium for performing the method, that includes generating a template corresponding to a supraventricular rhythm of the patient, determining whether the template is valid, and monitoring the template to determine whether the template is an accurate representation of the supraventricular rhythm. The template is created from non-paced R waves that are below a predetermined heart rate, and a statistical validation of the template is performed by evaluating the template based on matches against ongoing slow heart rhythm. The quality of the template is continuously monitored, similar to the statistical validation, with the exception that one thousand beats are evaluated and once more than thirty out of the last one hundred beats do not match the template within the threshold, an attempt is made to create a new template.
摘要:
A device for monitoring heart rhythms. The device is provided with an amplifier for receiving electrogram signals, a memory for storing digitized electrogram segments including signals indicative of depolarizations of a chamber or chamber of a patient's heart and a microprocessor and associated software for transforming analyzing the digitized signals. The digitized signals are analyzed by first transforming the signals into signal wavelet coefficients using a wavelet transform. The higher amplitude ones of the signal wavelet coefficients are identified and the higher amplitude ones of the signal wavelet coefficients are compared with a corresponding set of template wavelet coefficients derived from signals indicative of a heart depolarization of known type. The digitized signals may be transformed using a Haar wavelet transform to obtain the signal wavelet coefficients, and the transformed signals may be filtered by deleting lower amplitude ones of the signal wavelet coefficients. The transformed signals may be compared by ordering the signal and template wavelet coefficients by absolute amplitude and comparing the orders of the signal and template wavelet coefficients. Alternatively, the transformed signals may be compared by calculating distances between the signal and wavelet coefficients. In preferred embodiments the Haar transform may be a simplified transform which also emphasizes the signal contribution of the wider wavelet coefficients.
摘要:
A method of generating a template in an implantable medical device for implantation within a patient, and a processor readable medium for performing the method, that includes generating a template corresponding to a supraventricular rhythm of the patient, determining whether the template is valid, and monitoring the template to determine whether the template is an accurate representation of the supraventricular rhythm. The template is created from non-paced R waves that are below a predetermined heart rate, and a statistical validation of the template is performed by evaluating the template based on matches against ongoing slow heart rhythm. The quality of the template is continuously monitored, similar to the statistical validation, with the exception that one thousand beats are evaluated and once more than thirty out of the last one hundred beats do not match the template within the threshold, an attempt is made to create a new template.
摘要:
A device for monitoring heart rhythms. The device is provided with an amplifier for receiving electrogram signals, a memory for storing digitized electrogram segments including signals indicative of depolarizations of a chamber or chamber of a patient's heart and a microprocessor and associated software for transforming analyzing the digitized signals. The digitized signals are analyzed by first transforming the signals into signal wavelet coefficients using a wavelet transform. The higher amplitude ones of the signal wavelet coefficients are identified and the higher amplitude ones of the signal wavelet coefficients are compared with a corresponding set of template wavelet coefficients derived from signals indicative of a heart depolarization of known type. The digitized signals may be transformed using a Haar wavelet transform to obtain the signal wavelet coefficients, and the transformed signals may be filtered by deleting lower amplitude ones of the signal wavelet coefficients. The transformed signals may be compared by ordering the signal and template wavelet coefficients by absolute amplitude and comparing the orders of the signal and template wavelet coefficients. Alternatively, the transformed signals may be compared by calculating distances between the signal and wavelet coefficients. In preferred embodiments the Haar transform may be a simplified transform which also emphasizes the signal contribution of the wider wavelet coefficients.