摘要:
A process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of an amorphous perfluorinated dioxolane and a fluorovinyl monomer. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
摘要:
Sweep-based gas separation processes for reducing carbon dioxide emissions from gas-fired power plants. The invention involves at least two compression steps, a combustion step, a carbon dioxide capture step, a power generate step, and a sweep-based membrane separation step. One of the compression steps is used to produce a low-pressure, low-temperature compressed stream that is sent for treatment in the carbon dioxide capture step, thereby avoiding the need to expend large amounts of energy to cool an otherwise hot compressed stream from a typical compressor that produces a high-pressure stream, usually at 20-30 bar or more.
摘要:
Sweep-based gas separation processes are used for reducing carbon dioxide emissions from gas power plants. The invention involves at least two compression steps, a combustion step, a carbon dioxide capture step, a power generation step and a sweep-based membrane separation step. One of the compression steps is used for producing a low-pressure and low-temperature compressed stream treated in the carbon dioxide capture step, thus dispensing with the need to spend large amounts of energy to cool a compressed stream from a typical compressor which produces a high-pressure stream, generally of 20-30 bar or more.
摘要:
Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
摘要:
Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
摘要:
A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
摘要:
A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
摘要:
A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.