Abstract:
A method and apparatus determine a channel response for an alternative sensor (306) using an alternative sensor signal (316) and an air conduction microphone signal (318). The channel response is then used to estimate a clean speech value using at least a portion of the alternative sensor signal.
Abstract:
A method and system use an alternative sensor signal received from a sensor other than an air conduction microphone to estimate a clean speech value. The estimation uses either the alternative sensor signal alone, or in conjunction with the air conduction microphone signal. The clean speech value is estimated without using a model trained from noisy training data collected from an air conduction microphone. Under one embodiment, correction vectors are added to a vector formed from the alternative sensor signal in order to form a filter, which is applied to the air conductive microphone signal to produce the clean speech estimate. In other embodiments, the pitch of a speech signal is determined from the alternative sensor signal and is used to decompose an air conduction microphone signal. The decomposed signal is then used to determine a clean signal estimate.
Abstract:
A mobile device is provided that includes a digit input that can be manipulated by a user's fingers or thumb, an air conduction microphone (108) and an alternative sensor (112,114) that provides an alternative sensor signal indicative of speech. Under some embodiments, the mobile device also includes a proximity sensor (116) that provides a proximity signal indicative of the distance from the mobile device to an object. Under some embodiments, the signal from the air conduction microphone, the alternative sensor signal, and the proximity signal are used to form an estimate of a clean speech value. In further embodiments, a sound is produced through a speaker (110) in the mobile device based on the amount of noise in the clean speech value. In other embodiments, the sound produced through the speaker is based on the proximity sensor signal.
Abstract:
A mobile device is provided that includes a digit input that can be manipulated by a user's fingers or thumb, an air conduction microphone (108) and an alternative sensor (112,114) that provides an alternative sensor signal indicative of speech. Under some embodiments, the mobile device also includes a proximity sensor (116) that provides a proximity signal indicative of the distance from the mobile device to an object. Under some embodiments, the signal from the air conduction microphone, the alternative sensor signal, and the proximity signal are used to form an estimate of a clean speech value. In further embodiments, a sound is produced through a speaker (110) in the mobile device based on the amount of noise in the clean speech value. In other embodiments, the sound produced through the speaker is based on the proximity sensor signal.
Abstract:
A method and system use an alternative sensor signal received from a sensor other than an air conduction microphone to estimate a clean speech value. The estimation uses either the alternative sensor signal alone, or in conjunction with the air conduction microphone signal. The clean speech value is estimated without using a model trained from noisy training data collected from an air conduction microphone. Under one embodiment, correction vectors are added to a vector formed from the alternative sensor signal in order to form a filter, which is applied to the air conductive microphone signal to produce the clean speech estimate. In other embodiments, the pitch of a speech signal is determined from the alternative sensor signal and is used to decompose an air conduction microphone signal. The decomposed signal is then used to determine a clean signal estimate.