摘要:
Systems and methods are provided for improving language models for speech recognition by adapting knowledge sources utilized by the language models to session contexts. A knowledge source, such as a knowledge graph, is used to capture and model dynamic session context based on user interaction information from usage history, such as session logs, that is mapped to the knowledge source. From sequences of user interactions, higher level intent sequences may be determined and used to form models that anticipate similar intents but with different arguments including arguments that do not necessarily appear in the usage history. In this way, the session context models may be used to determine likely next interactions or “turns” from a user, given a previous turn or turns. Language models corresponding to the likely next turns are then interpolated and provided to improve recognition accuracy of the next turn received from the user.
摘要:
Systems and methods are provided for improving language models for speech recognition by personalizing knowledge sources utilized by the language models to specific users or user-population characteristics. A knowledge source, such as a knowledge graph, is personalized for a particular user by mapping entities or user actions from usage history for the user, such as query logs, to the knowledge source. The personalized knowledge source may be used to build a personal language model by training a language model with queries corresponding to entities or entity pairs that appear in usage history. In some embodiments, a personalized knowledge source for a specific user can be extended based on personalized knowledge sources of similar users.
摘要:
Systems and methods are provided for improving language models for speech recognition by adapting knowledge sources utilized by the language models to session contexts. A knowledge source, such as a knowledge graph, is used to capture and model dynamic session context based on user interaction information from usage history, such as session logs, that is mapped to the knowledge source. From sequences of user interactions, higher level intent sequences may be determined and used to form models that anticipate similar intents but with different arguments including arguments that do not necessarily appear in the usage history. In this way, the session context models may be used to determine likely next interactions or “turns” from a user, given a previous turn or turns. Language models corresponding to the likely next turns are then interpolated and provided to improve recognition accuracy of the next turn received from the user.
摘要:
A model-based approach for on-screen item selection and disambiguation is provided. An utterance may be received by a computing device in response to a display of a list of items for selection on a display screen. A disambiguation model may then be applied to the utterance. The disambiguation model may be utilized to determine whether the utterance is directed to at least one of the list of displayed items, extract referential features from the utterance and identify an item from the list corresponding to the utterance, based on the extracted referential features. The computing device may then perform an action which includes selecting the identified item associated with utterance.
摘要:
Improving accuracy in understanding and/or resolving references to visual elements in a visual context associated with a computerized conversational system is described. Techniques described herein leverage gaze input with gestures and/or speech input to improve spoken language understanding in computerized conversational systems. Leveraging gaze input and speech input improves spoken language understanding in conversational systems by improving the accuracy by which the system can resolve references—or interpret a user's intent—with respect to visual elements in a visual context. In at least one example, the techniques herein describe tracking gaze to generate gaze input, recognizing speech input, and extracting gaze features and lexical features from the user input. Based at least in part on the gaze features and lexical features, user utterances directed to visual elements in a visual context can be resolved.
摘要:
Processes capable of accepting linguistic input in one or more languages are generated by re-using existing linguistic components associated with a different anchor language, together with machine translation components that translate between the anchor language and the one or more languages. Linguistic input is directed to machine translation components that translate such input from its language into the anchor language. Those existing linguistic components are then utilized to initiate responsive processing and generate output. Optionally, the output is directed through the machine translation components. A language identifier can initially receive linguistic input and identify the language within which such linguistic input is provided to select an appropriate machine translation component. A hybrid process, comprising machine translation components and linguistic components associated with the anchor language, can also serve as an initiating construct from which a single language process is created over time.